Julie M. Laurent, Mathias Steinacher, Anton Kan, Maximilian Ritter, Mario Leutert, Siiri Bienz, David Häberlin, Naresh Kumar, André R. Studart
{"title":"基因对细菌制纤维素结构和力学的影响。","authors":"Julie M. Laurent, Mathias Steinacher, Anton Kan, Maximilian Ritter, Mario Leutert, Siiri Bienz, David Häberlin, Naresh Kumar, André R. Studart","doi":"10.1002/advs.202505075","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of cellulose pellicles by bacteria offers an enticing strategy for the biofabrication of sustainable materials and biomedical devices. To leverage this potential, bacterial strains that overproduce cellulose are identified through directed evolution technology. While cellulose overproduction is linked with a specific genetic mutation, the effect of such mutation on the intracellular protein landscape and on the structure and mechanical properties of the cellulose pellicles is not yet understood. Here, the proteome of bacteria evolved to overproduce cellulose is studied and its effect on the structure and mechanics of the resulting cellulose pellicles is investigated. Proteomic analysis reveals that the protein landscape of the evolved bacteria shows pronounced differences from that of native microorganisms. Thanks to concerted changes in the proteome, the evolved bacteria can generate cellulose pellicles with exquisite structure and improved mechanical properties for applications in textiles, packaging, and medical implants.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 33","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505075","citationCount":"0","resultStr":"{\"title\":\"Genetic Impacts on the Structure and Mechanics of Cellulose Made by Bacteria\",\"authors\":\"Julie M. Laurent, Mathias Steinacher, Anton Kan, Maximilian Ritter, Mario Leutert, Siiri Bienz, David Häberlin, Naresh Kumar, André R. Studart\",\"doi\":\"10.1002/advs.202505075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synthesis of cellulose pellicles by bacteria offers an enticing strategy for the biofabrication of sustainable materials and biomedical devices. To leverage this potential, bacterial strains that overproduce cellulose are identified through directed evolution technology. While cellulose overproduction is linked with a specific genetic mutation, the effect of such mutation on the intracellular protein landscape and on the structure and mechanical properties of the cellulose pellicles is not yet understood. Here, the proteome of bacteria evolved to overproduce cellulose is studied and its effect on the structure and mechanics of the resulting cellulose pellicles is investigated. Proteomic analysis reveals that the protein landscape of the evolved bacteria shows pronounced differences from that of native microorganisms. Thanks to concerted changes in the proteome, the evolved bacteria can generate cellulose pellicles with exquisite structure and improved mechanical properties for applications in textiles, packaging, and medical implants.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505075\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505075","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Genetic Impacts on the Structure and Mechanics of Cellulose Made by Bacteria
The synthesis of cellulose pellicles by bacteria offers an enticing strategy for the biofabrication of sustainable materials and biomedical devices. To leverage this potential, bacterial strains that overproduce cellulose are identified through directed evolution technology. While cellulose overproduction is linked with a specific genetic mutation, the effect of such mutation on the intracellular protein landscape and on the structure and mechanical properties of the cellulose pellicles is not yet understood. Here, the proteome of bacteria evolved to overproduce cellulose is studied and its effect on the structure and mechanics of the resulting cellulose pellicles is investigated. Proteomic analysis reveals that the protein landscape of the evolved bacteria shows pronounced differences from that of native microorganisms. Thanks to concerted changes in the proteome, the evolved bacteria can generate cellulose pellicles with exquisite structure and improved mechanical properties for applications in textiles, packaging, and medical implants.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.