Umair Khan , Basit Ali , Yuxiang Bu , M. Idrees , B. Amin
{"title":"基于界面工程的TaTe2-In2XY ((X≠Y)= S, Se, Te) van der Waals异质结构中的可调谐Schottky势垒","authors":"Umair Khan , Basit Ali , Yuxiang Bu , M. Idrees , B. Amin","doi":"10.1016/j.jpcs.2025.112832","DOIUrl":null,"url":null,"abstract":"<div><div>We focus on exploring the potential of novel two-dimensional (2D) Janus materials to overcome critical challenges in advanced nanoelectronic devices by achieving Ohmic contact at the metal–semiconductor (MS) interface. The asymmetrical structure with unique electronic properties of these Janus materials, offer promising opportunities to optimize contact resistance and enhance carrier mobility for high-performance nanoelectronic devices. Using a series of calculations based on Density Functional Theory (DFT), electronic properties and contact type (Schottky/Ohmic) at the interface of TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) van der Waals heterostructures (vdWHs) are investigated. The mechanical and thermal stabilities of these systems are confirmed via Born criteria, binding energy and ab-initio molecular dynamic (AIMD) simulations, while phonon spectra are used to further verify their dynamical stability. Electronic band structure and density of states show type-III band alignment with the p-type Schottky contact at the interface of TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) vdWHs. These calculations are followed by a detailed examination of the strain engineering to modulate height of the Schottky contact and tunneling barrier probability. Interestingly, a compressive strain of 2% switched TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>STe and TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SeTe from Schottky to Ohmic contact, highlighting the tunability of these vdWHs for tailored electronic applications. Electrostatic potential along z-direction, confirm transfer of charge from TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> to the In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY layer in TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) vdWHs. Charge density difference and Bader charge analysis, show charge depletion (accumulation) around TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY) layer, that indicate loses (gain) of electrons in TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY). Our findings demonstrate the critical role of strain engineering in optimizing contacts resistance along with tunneling barrier (TB) modulation, providing a pathway to understand the mechanisms for designing next-generation nanoelectronic devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112832"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Schottky barriers in TaTe2-In2XY ((X≠Y)= S, Se, Te) van der Waals heterostructures via interface engineering\",\"authors\":\"Umair Khan , Basit Ali , Yuxiang Bu , M. Idrees , B. Amin\",\"doi\":\"10.1016/j.jpcs.2025.112832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We focus on exploring the potential of novel two-dimensional (2D) Janus materials to overcome critical challenges in advanced nanoelectronic devices by achieving Ohmic contact at the metal–semiconductor (MS) interface. The asymmetrical structure with unique electronic properties of these Janus materials, offer promising opportunities to optimize contact resistance and enhance carrier mobility for high-performance nanoelectronic devices. Using a series of calculations based on Density Functional Theory (DFT), electronic properties and contact type (Schottky/Ohmic) at the interface of TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) van der Waals heterostructures (vdWHs) are investigated. The mechanical and thermal stabilities of these systems are confirmed via Born criteria, binding energy and ab-initio molecular dynamic (AIMD) simulations, while phonon spectra are used to further verify their dynamical stability. Electronic band structure and density of states show type-III band alignment with the p-type Schottky contact at the interface of TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) vdWHs. These calculations are followed by a detailed examination of the strain engineering to modulate height of the Schottky contact and tunneling barrier probability. Interestingly, a compressive strain of 2% switched TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>STe and TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>SeTe from Schottky to Ohmic contact, highlighting the tunability of these vdWHs for tailored electronic applications. Electrostatic potential along z-direction, confirm transfer of charge from TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> to the In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY layer in TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY ((X<span><math><mo>≠</mo></math></span>Y)= S, Se, Te) vdWHs. Charge density difference and Bader charge analysis, show charge depletion (accumulation) around TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY) layer, that indicate loses (gain) of electrons in TaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>XY). Our findings demonstrate the critical role of strain engineering in optimizing contacts resistance along with tunneling barrier (TB) modulation, providing a pathway to understand the mechanisms for designing next-generation nanoelectronic devices.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112832\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002847\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们专注于探索新型二维(2D) Janus材料的潜力,通过在金属-半导体(MS)界面上实现欧姆接触来克服先进纳米电子器件中的关键挑战。这些Janus材料的不对称结构具有独特的电子性能,为优化接触电阻和增强高性能纳米电子器件的载流子迁移率提供了有希望的机会。采用基于密度泛函理论(DFT)的一系列计算方法,研究了TaTe2-In2XY ((X≠Y)= S, Se, Te)范德华异质结构(vdWHs)界面上的电子性质和接触类型(肖特基/欧姆)。通过Born准则、结合能和ab-initio分子动力学(AIMD)模拟证实了这些体系的力学和热稳定性,并利用声子谱进一步验证了它们的动力学稳定性。在TaTe2-In2XY ((X≠Y)= S, Se, Te) vdWHs界面处,电子能带结构和态密度与p型肖特基接触呈iii型带向。这些计算之后是对应变工程的详细检查,以调节肖特基接触的高度和隧道势垒概率。有趣的是,2%的压缩应变将TaTe2-In2STe和TaTe2-In2SeTe从肖特基接触切换到欧姆接触,突出了这些vdWHs在定制电子应用中的可调性。沿z方向的静电电位,证实了TaTe2-In2XY ((X≠Y)= S, Se, Te) vdWHs中电荷从TaTe2向In2XY层的转移。电荷密度差和Bader电荷分析显示,TaTe2 (In2XY)层周围电荷耗尽(积累),表明TaTe2 (In2XY)层中电子损失(获得)。我们的研究结果证明了应变工程在优化接触电阻和隧道势垒(TB)调制中的关键作用,为理解设计下一代纳米电子器件的机制提供了途径。
Tunable Schottky barriers in TaTe2-In2XY ((X≠Y)= S, Se, Te) van der Waals heterostructures via interface engineering
We focus on exploring the potential of novel two-dimensional (2D) Janus materials to overcome critical challenges in advanced nanoelectronic devices by achieving Ohmic contact at the metal–semiconductor (MS) interface. The asymmetrical structure with unique electronic properties of these Janus materials, offer promising opportunities to optimize contact resistance and enhance carrier mobility for high-performance nanoelectronic devices. Using a series of calculations based on Density Functional Theory (DFT), electronic properties and contact type (Schottky/Ohmic) at the interface of TaTe-InXY ((XY)= S, Se, Te) van der Waals heterostructures (vdWHs) are investigated. The mechanical and thermal stabilities of these systems are confirmed via Born criteria, binding energy and ab-initio molecular dynamic (AIMD) simulations, while phonon spectra are used to further verify their dynamical stability. Electronic band structure and density of states show type-III band alignment with the p-type Schottky contact at the interface of TaTe-InXY ((XY)= S, Se, Te) vdWHs. These calculations are followed by a detailed examination of the strain engineering to modulate height of the Schottky contact and tunneling barrier probability. Interestingly, a compressive strain of 2% switched TaTe-InSTe and TaTe-InSeTe from Schottky to Ohmic contact, highlighting the tunability of these vdWHs for tailored electronic applications. Electrostatic potential along z-direction, confirm transfer of charge from TaTe to the InXY layer in TaTe-InXY ((XY)= S, Se, Te) vdWHs. Charge density difference and Bader charge analysis, show charge depletion (accumulation) around TaTe (InXY) layer, that indicate loses (gain) of electrons in TaTe (InXY). Our findings demonstrate the critical role of strain engineering in optimizing contacts resistance along with tunneling barrier (TB) modulation, providing a pathway to understand the mechanisms for designing next-generation nanoelectronic devices.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.