基于输入扭曲高斯过程的日前风力发电概率时空建模

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Qiqi Li , Michael Ludkovski
{"title":"基于输入扭曲高斯过程的日前风力发电概率时空建模","authors":"Qiqi Li ,&nbsp;Michael Ludkovski","doi":"10.1016/j.spasta.2025.100906","DOIUrl":null,"url":null,"abstract":"<div><div>We design a Gaussian process (GP) spatiotemporal model to capture features of day-ahead wind power forecasts. We work with hourly-scale day-ahead forecasts across hundreds of wind farm locations, with the main aim of constructing a fully probabilistic joint model across space and hours of the day. To this end, we design a separable space–time kernel, implementing both temporal and spatial input warping to capture the nonstationarity in the covariance of wind power. We conduct synthetic experiments to validate our choice of the spatial kernel and to demonstrate the effectiveness of warping in addressing nonstationarity. The second half of the paper is devoted to a detailed case study using a realistic, fully calibrated dataset representing wind farms in the ERCOT region of Texas.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"68 ","pages":"Article 100906"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic spatiotemporal modeling of day-ahead wind power generation with input-warped Gaussian processes\",\"authors\":\"Qiqi Li ,&nbsp;Michael Ludkovski\",\"doi\":\"10.1016/j.spasta.2025.100906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We design a Gaussian process (GP) spatiotemporal model to capture features of day-ahead wind power forecasts. We work with hourly-scale day-ahead forecasts across hundreds of wind farm locations, with the main aim of constructing a fully probabilistic joint model across space and hours of the day. To this end, we design a separable space–time kernel, implementing both temporal and spatial input warping to capture the nonstationarity in the covariance of wind power. We conduct synthetic experiments to validate our choice of the spatial kernel and to demonstrate the effectiveness of warping in addressing nonstationarity. The second half of the paper is devoted to a detailed case study using a realistic, fully calibrated dataset representing wind farms in the ERCOT region of Texas.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"68 \",\"pages\":\"Article 100906\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675325000284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一个高斯过程(GP)时空模型来捕捉日前风电预测的特征。我们在数百个风电场的位置上进行小时尺度的前一天预测,主要目的是建立一个跨空间和一天中的小时的全概率联合模型。为此,我们设计了一个可分离的时空核,实现了时间和空间的输入扭曲,以捕获风电协方差的非平稳性。我们进行了综合实验来验证我们对空间核的选择,并证明了翘曲在解决非平稳性方面的有效性。本文的后半部分是一个详细的案例研究,使用了一个真实的、完全校准的数据集,代表了德克萨斯州ERCOT地区的风力发电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic spatiotemporal modeling of day-ahead wind power generation with input-warped Gaussian processes
We design a Gaussian process (GP) spatiotemporal model to capture features of day-ahead wind power forecasts. We work with hourly-scale day-ahead forecasts across hundreds of wind farm locations, with the main aim of constructing a fully probabilistic joint model across space and hours of the day. To this end, we design a separable space–time kernel, implementing both temporal and spatial input warping to capture the nonstationarity in the covariance of wind power. We conduct synthetic experiments to validate our choice of the spatial kernel and to demonstrate the effectiveness of warping in addressing nonstationarity. The second half of the paper is devoted to a detailed case study using a realistic, fully calibrated dataset representing wind farms in the ERCOT region of Texas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信