{"title":"带平流的主特征值问题的小扩散极限","authors":"Yujin Guo , Yuan Lou , Hongfei Zhang","doi":"10.1016/j.jde.2025.113473","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the following second order principal eigenvalue problem with an advection term:<span><span><span><math><mo>−</mo><mi>ε</mi><mi>Δ</mi><mi>ϕ</mi><mo>−</mo><mn>2</mn><mi>α</mi><mi>∇</mi><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>ϕ</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>ϕ</mi><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>ε</mi></mrow></msub><mi>ϕ</mi><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a bounded domain with smooth boundary ∂Ω and contains the origin as an interior point, the constants <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> are the diffusive and advection coefficients, respectively, and <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo><mspace></mspace><mo>(</mo><mn>0</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>)</mo></math></span> are given functions. We investigate the refined limiting profiles of the principal eigenpair for the above eigenvalue problem in the small diffusion limit (<em>i.e.</em>, <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>), where the advection term <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> can be degenerate.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113473"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The small diffusion limit of the principal eigenvalue problems with advection\",\"authors\":\"Yujin Guo , Yuan Lou , Hongfei Zhang\",\"doi\":\"10.1016/j.jde.2025.113473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the following second order principal eigenvalue problem with an advection term:<span><span><span><math><mo>−</mo><mi>ε</mi><mi>Δ</mi><mi>ϕ</mi><mo>−</mo><mn>2</mn><mi>α</mi><mi>∇</mi><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>ϕ</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>ϕ</mi><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>ε</mi></mrow></msub><mi>ϕ</mi><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a bounded domain with smooth boundary ∂Ω and contains the origin as an interior point, the constants <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> are the diffusive and advection coefficients, respectively, and <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo><mspace></mspace><mo>(</mo><mn>0</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>)</mo></math></span> are given functions. We investigate the refined limiting profiles of the principal eigenpair for the above eigenvalue problem in the small diffusion limit (<em>i.e.</em>, <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>), where the advection term <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> can be degenerate.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113473\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005005\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The small diffusion limit of the principal eigenvalue problems with advection
This paper is concerned with the following second order principal eigenvalue problem with an advection term: where is a bounded domain with smooth boundary ∂Ω and contains the origin as an interior point, the constants and are the diffusive and advection coefficients, respectively, and , are given functions. We investigate the refined limiting profiles of the principal eigenpair for the above eigenvalue problem in the small diffusion limit (i.e., ), where the advection term can be degenerate.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics