推进统计力学中的逆问题:一个五体相互作用的视角

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Richard Kwame Ansah , Kassim Tawiah , Ruth Naayi Odankey Abbey
{"title":"推进统计力学中的逆问题:一个五体相互作用的视角","authors":"Richard Kwame Ansah ,&nbsp;Kassim Tawiah ,&nbsp;Ruth Naayi Odankey Abbey","doi":"10.1016/j.physa.2025.130700","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the inverse Ising problem with five-body interactions in the mean-field model, focusing on deriving analytical solutions and statistical estimations for macroscopic parameters like magnetization and susceptibility. Using the maximum likelihood criterion and clustering algorithms, the study presents a robust framework for parameter estimation that addresses challenges posed by metastable states. Results demonstrate the convergence of finite-size quantities to their thermodynamic counterparts, providing insights into higher-order interactions’ roles in statistical mechanics. This approach offers significant applications in physics, biological systems, and data science, enriching the theoretical and practical toolkit for addressing complex inverse problems.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130700"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing the inverse problem in statistical mechanics: A five-body interaction perspective\",\"authors\":\"Richard Kwame Ansah ,&nbsp;Kassim Tawiah ,&nbsp;Ruth Naayi Odankey Abbey\",\"doi\":\"10.1016/j.physa.2025.130700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the inverse Ising problem with five-body interactions in the mean-field model, focusing on deriving analytical solutions and statistical estimations for macroscopic parameters like magnetization and susceptibility. Using the maximum likelihood criterion and clustering algorithms, the study presents a robust framework for parameter estimation that addresses challenges posed by metastable states. Results demonstrate the convergence of finite-size quantities to their thermodynamic counterparts, providing insights into higher-order interactions’ roles in statistical mechanics. This approach offers significant applications in physics, biological systems, and data science, enriching the theoretical and practical toolkit for addressing complex inverse problems.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"674 \",\"pages\":\"Article 130700\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125003528\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125003528","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了平均场模型中具有五体相互作用的逆Ising问题,重点推导了磁化率和磁化率等宏观参数的解析解和统计估计。利用最大似然准则和聚类算法,该研究提出了一个鲁棒的参数估计框架,以解决亚稳态带来的挑战。结果表明,有限大小的量收敛到它们的热力学对应物,提供了高阶相互作用在统计力学中的作用的见解。这种方法在物理学、生物系统和数据科学中提供了重要的应用,丰富了解决复杂逆问题的理论和实践工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing the inverse problem in statistical mechanics: A five-body interaction perspective
This paper explores the inverse Ising problem with five-body interactions in the mean-field model, focusing on deriving analytical solutions and statistical estimations for macroscopic parameters like magnetization and susceptibility. Using the maximum likelihood criterion and clustering algorithms, the study presents a robust framework for parameter estimation that addresses challenges posed by metastable states. Results demonstrate the convergence of finite-size quantities to their thermodynamic counterparts, providing insights into higher-order interactions’ roles in statistical mechanics. This approach offers significant applications in physics, biological systems, and data science, enriching the theoretical and practical toolkit for addressing complex inverse problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信