{"title":"具有梯度自然增长和奇异非线性的完全非线性椭圆方程的正则性","authors":"Mohan Mallick , Ram Baran Verma","doi":"10.1016/j.jde.2025.113477","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we consider the following boundary value problem:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where Ω is a bounded and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The operator <em>F</em> is proper and has superlinear growth in gradient. This study examines the boundary behavior of the solutions to the above equation and establishes a global regularity result similar to that established in <span><span>[11]</span></span>, <span><span>[15]</span></span>, which involves linear growth in the gradient.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113477"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity for fully nonlinear elliptic equations with natural growth in gradient and singular nonlinearity\",\"authors\":\"Mohan Mallick , Ram Baran Verma\",\"doi\":\"10.1016/j.jde.2025.113477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we consider the following boundary value problem:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where Ω is a bounded and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The operator <em>F</em> is proper and has superlinear growth in gradient. This study examines the boundary behavior of the solutions to the above equation and establishes a global regularity result similar to that established in <span><span>[11]</span></span>, <span><span>[15]</span></span>, which involves linear growth in the gradient.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113477\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005042\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regularity for fully nonlinear elliptic equations with natural growth in gradient and singular nonlinearity
In this article, we consider the following boundary value problem: where Ω is a bounded and smooth domain in . The operator F is proper and has superlinear growth in gradient. This study examines the boundary behavior of the solutions to the above equation and establishes a global regularity result similar to that established in [11], [15], which involves linear growth in the gradient.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics