Michael E. Mckenna , Hrushikesh N. Mhaskar , Richard G. Spencer
{"title":"实线上质点的拉普拉斯变换到傅里叶域的特征函数转换方法","authors":"Michael E. Mckenna , Hrushikesh N. Mhaskar , Richard G. Spencer","doi":"10.1016/j.acha.2025.101776","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function <span><math><mi>t</mi><mo>↦</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>K</mi></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>exp</mi><mo></mo><mo>(</mo><mo>−</mo><mi>t</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>K</mi><mo>≥</mo><mn>2</mn></math></span> is an integer, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, determine <em>K</em>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s. Unlike the case in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are replaced by <span><math><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101776"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigenfunction approach to conversion of the Laplace transform of point masses on the real line to the Fourier domain\",\"authors\":\"Michael E. Mckenna , Hrushikesh N. Mhaskar , Richard G. Spencer\",\"doi\":\"10.1016/j.acha.2025.101776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function <span><math><mi>t</mi><mo>↦</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>K</mi></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>exp</mi><mo></mo><mo>(</mo><mo>−</mo><mi>t</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>K</mi><mo>≥</mo><mn>2</mn></math></span> is an integer, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, determine <em>K</em>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s. Unlike the case in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are replaced by <span><math><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101776\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000302\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An eigenfunction approach to conversion of the Laplace transform of point masses on the real line to the Fourier domain
Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function , where is an integer, , for , determine K, 's and 's. Unlike the case in which the 's are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the 's are replaced by . We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.