实线上质点的拉普拉斯变换到傅里叶域的特征函数转换方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Michael E. Mckenna , Hrushikesh N. Mhaskar , Richard G. Spencer
{"title":"实线上质点的拉普拉斯变换到傅里叶域的特征函数转换方法","authors":"Michael E. Mckenna ,&nbsp;Hrushikesh N. Mhaskar ,&nbsp;Richard G. Spencer","doi":"10.1016/j.acha.2025.101776","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function <span><math><mi>t</mi><mo>↦</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>K</mi></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>exp</mi><mo>⁡</mo><mo>(</mo><mo>−</mo><mi>t</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>K</mi><mo>≥</mo><mn>2</mn></math></span> is an integer, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, determine <em>K</em>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s. Unlike the case in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are replaced by <span><math><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101776"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigenfunction approach to conversion of the Laplace transform of point masses on the real line to the Fourier domain\",\"authors\":\"Michael E. Mckenna ,&nbsp;Hrushikesh N. Mhaskar ,&nbsp;Richard G. Spencer\",\"doi\":\"10.1016/j.acha.2025.101776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function <span><math><mi>t</mi><mo>↦</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>K</mi></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>exp</mi><mo>⁡</mo><mo>(</mo><mo>−</mo><mi>t</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>K</mi><mo>≥</mo><mn>2</mn></math></span> is an integer, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi></math></span>, determine <em>K</em>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s. Unlike the case in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>'s are replaced by <span><math><mi>i</mi><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101776\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000302\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由磁共振弛豫测量中的应用驱动,我们考虑以下问题:给定函数t∈∑k=1KAkexp (- tλk)的样本,其中k≥2是整数,Ak∈R, λk>;0对于k=1,⋯k,确定k, Ak和λk。不像λk是纯虚的情况,这个问题是出了名的不适定的。我们的目标是证明这个问题可以转化成一个等价的问题其中λk被λk取代。我们证明这可以通过埃尔米特函数的近似来实现,并且利用这些函数是傅里叶变换的特征函数这一事实。我们提出了从这种形式中提取参数的初步数值探索,包括噪声的影响。正如数值结果所反映的那样,原问题固有的不适定性在新域中仍然存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An eigenfunction approach to conversion of the Laplace transform of point masses on the real line to the Fourier domain
Motivated by applications in magnetic resonance relaxometry, we consider the following problem: given samples of a function tk=1KAkexp(tλk), where K2 is an integer, AkR, λk>0 for k=1,,K, determine K, Ak's and λk's. Unlike the case in which the λk's are purely imaginary, this problem is notoriously ill-posed. Our goal is to show that this problem can be transformed into an equivalent one in which the λk's are replaced by iλk. We show that this may be accomplished by approximation in terms of Hermite functions, and using the fact that these functions are eigenfunctions of the Fourier transform. We present a preliminary numerical exploration of parameter extraction from this formalism, including the effect of noise. The inherent ill-posedness of the original problem persists in the new domain, as reflected in the numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信