{"title":"火花随距离而消退:电场分布对使用不同te技术的全局运动感知的影响","authors":"Andrea Pavan , Filippo Ghin , Adriano Contillo , Sibel Akyuz , Gianluca Campana","doi":"10.1016/j.cortex.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Previous evidence has shown that high-frequency transcranial random noise stimulation (hf-tRNS) reduces motion coherence thresholds when applied with a cephalic montage (i.e., return electrode over Cz). Extracephalic montages, which avoid stimulating regions under the return electrode, have also been used to modulate behavioral performance. In this study, we investigated the effects of different transcranial electrical stimulation (tES) protocols on visual motion discrimination, placing the return electrode on the ipsilateral arm. We assessed the impact of electrode positioning using hf-tRNS, anodal, cathodal transcranial direct current stimulation (tDCS), and Sham stimulation over hMT+, a brain region involved in global motion perception. Motion direction discrimination was measured using random dot kinematograms (RDKs). Given the increased distance between the stimulation and return electrodes in this montage, we expected a smaller reduction in motion discrimination thresholds compared to our previous study. Our results suggest that increasing interelectrode distance alters current flow characteristics - such as current distribution and focality - within the cortical areas under the target electrode, producing different effects. Additionally, no significant effects were observed with the other tES protocols tested. Our findings suggest that change in the interelectrode distance influences current flow characteristics, such as current distribution and focality, within the cortical areas under the target electrode, resulting in differential neuromodulatory effects. These results highlight the importance of stimulation configuration on performance, particularly a potential electric field shift due to the change in the interelectrode distance. Given the widespread application of brain stimulation techniques in clinical and cognitive research, our results can guide future studies carefully considering this further aspect of stimulation montage configurations.</div></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"189 ","pages":"Pages 20-34"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparks fade with distance: The effect of electric field distribution on global motion perception using different tES techniques\",\"authors\":\"Andrea Pavan , Filippo Ghin , Adriano Contillo , Sibel Akyuz , Gianluca Campana\",\"doi\":\"10.1016/j.cortex.2025.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous evidence has shown that high-frequency transcranial random noise stimulation (hf-tRNS) reduces motion coherence thresholds when applied with a cephalic montage (i.e., return electrode over Cz). Extracephalic montages, which avoid stimulating regions under the return electrode, have also been used to modulate behavioral performance. In this study, we investigated the effects of different transcranial electrical stimulation (tES) protocols on visual motion discrimination, placing the return electrode on the ipsilateral arm. We assessed the impact of electrode positioning using hf-tRNS, anodal, cathodal transcranial direct current stimulation (tDCS), and Sham stimulation over hMT+, a brain region involved in global motion perception. Motion direction discrimination was measured using random dot kinematograms (RDKs). Given the increased distance between the stimulation and return electrodes in this montage, we expected a smaller reduction in motion discrimination thresholds compared to our previous study. Our results suggest that increasing interelectrode distance alters current flow characteristics - such as current distribution and focality - within the cortical areas under the target electrode, producing different effects. Additionally, no significant effects were observed with the other tES protocols tested. Our findings suggest that change in the interelectrode distance influences current flow characteristics, such as current distribution and focality, within the cortical areas under the target electrode, resulting in differential neuromodulatory effects. These results highlight the importance of stimulation configuration on performance, particularly a potential electric field shift due to the change in the interelectrode distance. Given the widespread application of brain stimulation techniques in clinical and cognitive research, our results can guide future studies carefully considering this further aspect of stimulation montage configurations.</div></div>\",\"PeriodicalId\":10758,\"journal\":{\"name\":\"Cortex\",\"volume\":\"189 \",\"pages\":\"Pages 20-34\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cortex\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010945225001364\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945225001364","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Sparks fade with distance: The effect of electric field distribution on global motion perception using different tES techniques
Previous evidence has shown that high-frequency transcranial random noise stimulation (hf-tRNS) reduces motion coherence thresholds when applied with a cephalic montage (i.e., return electrode over Cz). Extracephalic montages, which avoid stimulating regions under the return electrode, have also been used to modulate behavioral performance. In this study, we investigated the effects of different transcranial electrical stimulation (tES) protocols on visual motion discrimination, placing the return electrode on the ipsilateral arm. We assessed the impact of electrode positioning using hf-tRNS, anodal, cathodal transcranial direct current stimulation (tDCS), and Sham stimulation over hMT+, a brain region involved in global motion perception. Motion direction discrimination was measured using random dot kinematograms (RDKs). Given the increased distance between the stimulation and return electrodes in this montage, we expected a smaller reduction in motion discrimination thresholds compared to our previous study. Our results suggest that increasing interelectrode distance alters current flow characteristics - such as current distribution and focality - within the cortical areas under the target electrode, producing different effects. Additionally, no significant effects were observed with the other tES protocols tested. Our findings suggest that change in the interelectrode distance influences current flow characteristics, such as current distribution and focality, within the cortical areas under the target electrode, resulting in differential neuromodulatory effects. These results highlight the importance of stimulation configuration on performance, particularly a potential electric field shift due to the change in the interelectrode distance. Given the widespread application of brain stimulation techniques in clinical and cognitive research, our results can guide future studies carefully considering this further aspect of stimulation montage configurations.
期刊介绍:
CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.