Hua Liu , Jian Zhao , Qi Li , Xiang-Yu Zhang , Zhi-Wei Zheng , Kun Huang , Da-Bin Qin , Bin Zhao
{"title":"铟捕获的锆卟啉框架对醛和酮的催化转移加氢具有罕见的多选择性","authors":"Hua Liu , Jian Zhao , Qi Li , Xiang-Yu Zhang , Zhi-Wei Zheng , Kun Huang , Da-Bin Qin , Bin Zhao","doi":"10.1016/j.cclet.2024.110593","DOIUrl":null,"url":null,"abstract":"<div><div>Selective catalytic transfer hydrogenation (CTH) of carbonyl compounds to obtain specific alcohols holds significant importance across various fields. Achieving multiple selectivity in CTH is particularly crucial, but full of great challenge. Herein, a cationic In-captured Zr-porphyrin framework (<strong>1</strong>) with nanosized pores/cages was successfully constructed and showed high structure stability. Catalytic investigations revealed that <strong>1</strong> displayed highly multi-selective CTH of aldehydes and ketones containing both chemo- and size selectivity for the first time. The CTH of aldehydes and ketones exhibited remarkable reductive selectivity of 99% towards C<img>O bonds into CH<img>OH in the presence of -NO<sub>2</sub>, -CN and C<img>C groups. Through tuning the reaction conditions, <strong>1</strong> also exhibited highly selective reduction of 97% for -CHO groups in the simultaneous presence of -CHO and -COCH<sub>3</sub> groups in intra- and intermolecular settings. Remarkably, reductive selectivity towards -CHO group remained prominent among five concurrent unsaturated groups mentioned above. Additionally, the definite pore size of <strong>1</strong> facilitated volume control of substrates, enabling size selectivity. <strong>1</strong> as a heterogeneous catalyst was further confirmed by leaching tests, and maintained high activity even after being used for at least six cycles. Mechanistic studies have revealed that Zr<sub>6</sub>O<sub>8</sub> clusters served as the catalytic centers and the observed chemoselectivity mainly results from the synergistic effect of distinct metal sites within <strong>1</strong>. The heightened selectivity towards -CHO over -COCH<sub>3</sub> can be attributed to the easier realization of transfer hydrogenation processes for -CHO compared to -COCH<sub>3</sub>.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110593"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones\",\"authors\":\"Hua Liu , Jian Zhao , Qi Li , Xiang-Yu Zhang , Zhi-Wei Zheng , Kun Huang , Da-Bin Qin , Bin Zhao\",\"doi\":\"10.1016/j.cclet.2024.110593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Selective catalytic transfer hydrogenation (CTH) of carbonyl compounds to obtain specific alcohols holds significant importance across various fields. Achieving multiple selectivity in CTH is particularly crucial, but full of great challenge. Herein, a cationic In-captured Zr-porphyrin framework (<strong>1</strong>) with nanosized pores/cages was successfully constructed and showed high structure stability. Catalytic investigations revealed that <strong>1</strong> displayed highly multi-selective CTH of aldehydes and ketones containing both chemo- and size selectivity for the first time. The CTH of aldehydes and ketones exhibited remarkable reductive selectivity of 99% towards C<img>O bonds into CH<img>OH in the presence of -NO<sub>2</sub>, -CN and C<img>C groups. Through tuning the reaction conditions, <strong>1</strong> also exhibited highly selective reduction of 97% for -CHO groups in the simultaneous presence of -CHO and -COCH<sub>3</sub> groups in intra- and intermolecular settings. Remarkably, reductive selectivity towards -CHO group remained prominent among five concurrent unsaturated groups mentioned above. Additionally, the definite pore size of <strong>1</strong> facilitated volume control of substrates, enabling size selectivity. <strong>1</strong> as a heterogeneous catalyst was further confirmed by leaching tests, and maintained high activity even after being used for at least six cycles. Mechanistic studies have revealed that Zr<sub>6</sub>O<sub>8</sub> clusters served as the catalytic centers and the observed chemoselectivity mainly results from the synergistic effect of distinct metal sites within <strong>1</strong>. The heightened selectivity towards -CHO over -COCH<sub>3</sub> can be attributed to the easier realization of transfer hydrogenation processes for -CHO compared to -COCH<sub>3</sub>.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 6\",\"pages\":\"Article 110593\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724011112\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724011112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones
Selective catalytic transfer hydrogenation (CTH) of carbonyl compounds to obtain specific alcohols holds significant importance across various fields. Achieving multiple selectivity in CTH is particularly crucial, but full of great challenge. Herein, a cationic In-captured Zr-porphyrin framework (1) with nanosized pores/cages was successfully constructed and showed high structure stability. Catalytic investigations revealed that 1 displayed highly multi-selective CTH of aldehydes and ketones containing both chemo- and size selectivity for the first time. The CTH of aldehydes and ketones exhibited remarkable reductive selectivity of 99% towards CO bonds into CHOH in the presence of -NO2, -CN and CC groups. Through tuning the reaction conditions, 1 also exhibited highly selective reduction of 97% for -CHO groups in the simultaneous presence of -CHO and -COCH3 groups in intra- and intermolecular settings. Remarkably, reductive selectivity towards -CHO group remained prominent among five concurrent unsaturated groups mentioned above. Additionally, the definite pore size of 1 facilitated volume control of substrates, enabling size selectivity. 1 as a heterogeneous catalyst was further confirmed by leaching tests, and maintained high activity even after being used for at least six cycles. Mechanistic studies have revealed that Zr6O8 clusters served as the catalytic centers and the observed chemoselectivity mainly results from the synergistic effect of distinct metal sites within 1. The heightened selectivity towards -CHO over -COCH3 can be attributed to the easier realization of transfer hydrogenation processes for -CHO compared to -COCH3.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.