高热流密度冷却技术的历史回顾

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Ji Hwan Lim, Seung-Hwan Yu
{"title":"高热流密度冷却技术的历史回顾","authors":"Ji Hwan Lim,&nbsp;Seung-Hwan Yu","doi":"10.1016/j.net.2025.103725","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides a comprehensive historical analysis of high heat flux cooling techniques critical for advanced applications in nuclear energy, aerospace propulsion, and high-performance electronics. We trace the evolution of cooling strategies from early nucleate boiling experiments to recent innovations such as swirl flow devices, Hypervapotron channels, screw tubes, and porous coatings. By synthesizing experimental results and theoretical models, we identify significant enhancements in critical heat flux (CHF) and heat transfer coefficients, with swirl flow techniques offering improvements of 50–100 % over smooth channels and Hypervapotron systems achieving CHF levels up to 30 MW/m<sup>2</sup> under optimal conditions. Our review also highlights that while individual cooling methods exhibit unique performance benefits, an integrated hybrid approach holds promise for future high heat flux cooling systems. However, the translation from laboratory-scale success to practical, industrial-scale applications presents challenges, particularly in system complexity, maintenance, and cost analysis. We conclude that future research must bridge these gaps through interdisciplinary strategies, robust cost-analysis frameworks, and optimization studies. This balanced evaluation underscores both the technical achievements and the practical hurdles that define the current state and future potential of high heat flux cooling technologies.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 10","pages":"Article 103725"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A historical review of high heat flux cooling techniques\",\"authors\":\"Ji Hwan Lim,&nbsp;Seung-Hwan Yu\",\"doi\":\"10.1016/j.net.2025.103725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review provides a comprehensive historical analysis of high heat flux cooling techniques critical for advanced applications in nuclear energy, aerospace propulsion, and high-performance electronics. We trace the evolution of cooling strategies from early nucleate boiling experiments to recent innovations such as swirl flow devices, Hypervapotron channels, screw tubes, and porous coatings. By synthesizing experimental results and theoretical models, we identify significant enhancements in critical heat flux (CHF) and heat transfer coefficients, with swirl flow techniques offering improvements of 50–100 % over smooth channels and Hypervapotron systems achieving CHF levels up to 30 MW/m<sup>2</sup> under optimal conditions. Our review also highlights that while individual cooling methods exhibit unique performance benefits, an integrated hybrid approach holds promise for future high heat flux cooling systems. However, the translation from laboratory-scale success to practical, industrial-scale applications presents challenges, particularly in system complexity, maintenance, and cost analysis. We conclude that future research must bridge these gaps through interdisciplinary strategies, robust cost-analysis frameworks, and optimization studies. This balanced evaluation underscores both the technical achievements and the practical hurdles that define the current state and future potential of high heat flux cooling technologies.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 10\",\"pages\":\"Article 103725\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325002931\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325002931","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了高热流密度冷却技术在核能、航空航天推进和高性能电子领域的先进应用的全面历史分析。我们追溯了冷却策略的演变,从早期的核沸腾实验到最近的创新,如旋流装置、超蒸汽通道、螺旋管和多孔涂层。通过综合实验结果和理论模型,我们确定了临界热通量(CHF)和传热系数的显着增强,与光滑通道和Hypervapotron系统相比,旋流技术提供了50 - 100%的改进,在最佳条件下,CHF水平可达30 MW/m2。我们的回顾还强调,虽然个别冷却方法表现出独特的性能优势,综合混合方法有望为未来的高热流密度冷却系统。然而,从实验室规模的成功转化为实际的、工业规模的应用提出了挑战,特别是在系统复杂性、维护和成本分析方面。我们的结论是,未来的研究必须通过跨学科策略、健全的成本分析框架和优化研究来弥合这些差距。这种平衡的评价强调了确定高热流密度冷却技术现状和未来潜力的技术成就和实际障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A historical review of high heat flux cooling techniques
This review provides a comprehensive historical analysis of high heat flux cooling techniques critical for advanced applications in nuclear energy, aerospace propulsion, and high-performance electronics. We trace the evolution of cooling strategies from early nucleate boiling experiments to recent innovations such as swirl flow devices, Hypervapotron channels, screw tubes, and porous coatings. By synthesizing experimental results and theoretical models, we identify significant enhancements in critical heat flux (CHF) and heat transfer coefficients, with swirl flow techniques offering improvements of 50–100 % over smooth channels and Hypervapotron systems achieving CHF levels up to 30 MW/m2 under optimal conditions. Our review also highlights that while individual cooling methods exhibit unique performance benefits, an integrated hybrid approach holds promise for future high heat flux cooling systems. However, the translation from laboratory-scale success to practical, industrial-scale applications presents challenges, particularly in system complexity, maintenance, and cost analysis. We conclude that future research must bridge these gaps through interdisciplinary strategies, robust cost-analysis frameworks, and optimization studies. This balanced evaluation underscores both the technical achievements and the practical hurdles that define the current state and future potential of high heat flux cooling technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信