锆取代磁赤铁矿催化剂的水裂解活性

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
C. Mohapatra , S. Pradhan , Shah Ayushi , A. Sharma , C.K. Sumesh , N.K. Prasad
{"title":"锆取代磁赤铁矿催化剂的水裂解活性","authors":"C. Mohapatra ,&nbsp;S. Pradhan ,&nbsp;Shah Ayushi ,&nbsp;A. Sharma ,&nbsp;C.K. Sumesh ,&nbsp;N.K. Prasad","doi":"10.1016/j.ijhydene.2025.05.378","DOIUrl":null,"url":null,"abstract":"<div><div>It has been observed that Fe<sup>2+</sup> has more impact than Fe<sup>3+</sup> in hydrogen evolution reactions (HER) and oxygen evolution reactions (OER). If we dope one Zr<sup>4+</sup> ion in γ-Fe<sub>2</sub>O<sub>3</sub> then it reduces one Fe<sup>3+</sup> ion into a Fe<sup>2+</sup> ion and simultaneously replaces another Fe<sup>3+</sup> ion to maintain the charge neutrality. Thus, to get more Fe<sup>2+</sup> ions for better effect on electrochemical water splitting reactions, we prepared Zr substituted inverse spinel γ-Zr<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (where 0.07 ≤ x ≤ 0.27) magnetic nanoparticles of average size 18 nm using a one step solvothermal method. The X-ray diffraction (XRD), Mössbauer spectra, and electron diffraction patterns confirm the formation of single phased material up to x = 0.2. The presence of Zr, Fe, and O in their expected oxidation states was indicated by X-ray photoelectron spectroscopy. The maximum value for saturation magnetization was obtained as 62 emu/g for the γ-Zr<sub>0.13</sub>Fe<sub>1.87</sub>O<sub>3</sub> sample. The γ-Zr<sub>0.2</sub>Fe<sub>1.8</sub>O<sub>3</sub> sample after coating over 3D-Nickel foam, in an alkaline media demonstrates exceptional catalytic activity and great electrochemical stability. It offered low overpotentials of 1.48 V and 192 mV, respectively, to reach 10 mA/cm<sup>2</sup> for catalyzing OER and HER. Furthermore, the as-fabricated bifunctional electrocatalyst needs a cell voltage of 1.80 V to permit a current density of 10 mA/cm<sup>2</sup> for water electrolysis suggesting it as a very effective electrocatalyst for water splitting.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"143 ","pages":"Pages 213-222"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zr-substituted maghemite catalyst for water splitting activity\",\"authors\":\"C. Mohapatra ,&nbsp;S. Pradhan ,&nbsp;Shah Ayushi ,&nbsp;A. Sharma ,&nbsp;C.K. Sumesh ,&nbsp;N.K. Prasad\",\"doi\":\"10.1016/j.ijhydene.2025.05.378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been observed that Fe<sup>2+</sup> has more impact than Fe<sup>3+</sup> in hydrogen evolution reactions (HER) and oxygen evolution reactions (OER). If we dope one Zr<sup>4+</sup> ion in γ-Fe<sub>2</sub>O<sub>3</sub> then it reduces one Fe<sup>3+</sup> ion into a Fe<sup>2+</sup> ion and simultaneously replaces another Fe<sup>3+</sup> ion to maintain the charge neutrality. Thus, to get more Fe<sup>2+</sup> ions for better effect on electrochemical water splitting reactions, we prepared Zr substituted inverse spinel γ-Zr<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (where 0.07 ≤ x ≤ 0.27) magnetic nanoparticles of average size 18 nm using a one step solvothermal method. The X-ray diffraction (XRD), Mössbauer spectra, and electron diffraction patterns confirm the formation of single phased material up to x = 0.2. The presence of Zr, Fe, and O in their expected oxidation states was indicated by X-ray photoelectron spectroscopy. The maximum value for saturation magnetization was obtained as 62 emu/g for the γ-Zr<sub>0.13</sub>Fe<sub>1.87</sub>O<sub>3</sub> sample. The γ-Zr<sub>0.2</sub>Fe<sub>1.8</sub>O<sub>3</sub> sample after coating over 3D-Nickel foam, in an alkaline media demonstrates exceptional catalytic activity and great electrochemical stability. It offered low overpotentials of 1.48 V and 192 mV, respectively, to reach 10 mA/cm<sup>2</sup> for catalyzing OER and HER. Furthermore, the as-fabricated bifunctional electrocatalyst needs a cell voltage of 1.80 V to permit a current density of 10 mA/cm<sup>2</sup> for water electrolysis suggesting it as a very effective electrocatalyst for water splitting.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"143 \",\"pages\":\"Pages 213-222\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925026928\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925026928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究发现,Fe2+对析氢反应(HER)和析氧反应(OER)的影响大于Fe3+。如果我们在γ-Fe2O3中掺杂一个Zr4+离子,它会将一个Fe3+离子还原成一个Fe2+离子,同时取代另一个Fe3+离子以保持电荷中性。因此,为了获得更多的Fe2+离子,更好地进行电化学水分解反应,我们采用一步溶剂热法制备了平均尺寸为18 nm的Zr取代逆尖晶石γ-ZrxFe2-xO3(其中0.07≤x≤0.27)磁性纳米颗粒。x射线衍射(XRD)、Mössbauer光谱和电子衍射图证实了x = 0.2时形成的单相材料。通过x射线光电子能谱分析表明,Zr、Fe和O均处于预期氧化态。γ-Zr0.13Fe1.87O3样品的饱和磁化强度最大值为62 emu/g。在碱性介质中,包覆3d - ni泡沫后的γ-Zr0.2Fe1.8O3样品表现出优异的催化活性和良好的电化学稳定性。对OER和HER的过电位分别为1.48 V和192 mV,达到10 mA/cm2。此外,制备的双功能电催化剂需要1.80 V的电池电压才能允许电解水的电流密度为10 mA/cm2,这表明它是一种非常有效的水分解电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zr-substituted maghemite catalyst for water splitting activity
It has been observed that Fe2+ has more impact than Fe3+ in hydrogen evolution reactions (HER) and oxygen evolution reactions (OER). If we dope one Zr4+ ion in γ-Fe2O3 then it reduces one Fe3+ ion into a Fe2+ ion and simultaneously replaces another Fe3+ ion to maintain the charge neutrality. Thus, to get more Fe2+ ions for better effect on electrochemical water splitting reactions, we prepared Zr substituted inverse spinel γ-ZrxFe2-xO3 (where 0.07 ≤ x ≤ 0.27) magnetic nanoparticles of average size 18 nm using a one step solvothermal method. The X-ray diffraction (XRD), Mössbauer spectra, and electron diffraction patterns confirm the formation of single phased material up to x = 0.2. The presence of Zr, Fe, and O in their expected oxidation states was indicated by X-ray photoelectron spectroscopy. The maximum value for saturation magnetization was obtained as 62 emu/g for the γ-Zr0.13Fe1.87O3 sample. The γ-Zr0.2Fe1.8O3 sample after coating over 3D-Nickel foam, in an alkaline media demonstrates exceptional catalytic activity and great electrochemical stability. It offered low overpotentials of 1.48 V and 192 mV, respectively, to reach 10 mA/cm2 for catalyzing OER and HER. Furthermore, the as-fabricated bifunctional electrocatalyst needs a cell voltage of 1.80 V to permit a current density of 10 mA/cm2 for water electrolysis suggesting it as a very effective electrocatalyst for water splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信