一种用于高光谱目标跟踪的视觉提示学习网络

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haijiao Xing , Wei Wei , Lei Zhang , Chen Ding
{"title":"一种用于高光谱目标跟踪的视觉提示学习网络","authors":"Haijiao Xing ,&nbsp;Wei Wei ,&nbsp;Lei Zhang ,&nbsp;Chen Ding","doi":"10.1016/j.patrec.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral object tracking aims to achieve continuous tracking and localization of targets in a series of Hyperspectral images (HSIs) by analyzing and comparing the spectral and spatial features of the targets. Due to the relatively small size of hyperspectral object tracking datasets, existing strategies mainly rely on fine-tuning models initially trained on RGB images and then adapted them to hyperspectral data. However, the transferability of this comprehensive fine-tuning strategy is limited by the deficiencies in the data, resulting in suboptimal performance and limited results in hyperspectral object tracking. To address these challenges, we propose a visual prompt learning network for hyperspectral object tracking (VPH). In this approach, we freeze all the parameters of the model trained on RGB images and introduce a hyperspectral prompt module to efficiently transfer data-related information within HSIs to the RGB modality at a lower computational cost. In addition, we introduce an adapter module to adjust the frozen parameters of the RGB branch, ensuring fast adaptation to the hyperspectral tracking task. Our proposed network achieves the best performance in benchmark tests, validating the effectiveness of the proposed method. Our code and additional results are available at: <span><span>https://github.com/972821054/VPH.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 59-65"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual prompt learning network for hyperspectral object tracking\",\"authors\":\"Haijiao Xing ,&nbsp;Wei Wei ,&nbsp;Lei Zhang ,&nbsp;Chen Ding\",\"doi\":\"10.1016/j.patrec.2025.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperspectral object tracking aims to achieve continuous tracking and localization of targets in a series of Hyperspectral images (HSIs) by analyzing and comparing the spectral and spatial features of the targets. Due to the relatively small size of hyperspectral object tracking datasets, existing strategies mainly rely on fine-tuning models initially trained on RGB images and then adapted them to hyperspectral data. However, the transferability of this comprehensive fine-tuning strategy is limited by the deficiencies in the data, resulting in suboptimal performance and limited results in hyperspectral object tracking. To address these challenges, we propose a visual prompt learning network for hyperspectral object tracking (VPH). In this approach, we freeze all the parameters of the model trained on RGB images and introduce a hyperspectral prompt module to efficiently transfer data-related information within HSIs to the RGB modality at a lower computational cost. In addition, we introduce an adapter module to adjust the frozen parameters of the RGB branch, ensuring fast adaptation to the hyperspectral tracking task. Our proposed network achieves the best performance in benchmark tests, validating the effectiveness of the proposed method. Our code and additional results are available at: <span><span>https://github.com/972821054/VPH.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"196 \",\"pages\":\"Pages 59-65\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525001953\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525001953","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

高光谱目标跟踪的目的是通过分析和比较目标的光谱特征和空间特征,实现对一系列高光谱图像中目标的连续跟踪和定位。由于高光谱目标跟踪数据集的规模相对较小,现有的策略主要依赖于最初在RGB图像上训练的微调模型,然后将其适应于高光谱数据。然而,这种综合微调策略的可移植性受到数据不足的限制,导致高光谱目标跟踪的性能不理想,结果有限。为了解决这些挑战,我们提出了一种用于高光谱目标跟踪(VPH)的视觉提示学习网络。在这种方法中,我们冻结了在RGB图像上训练的模型的所有参数,并引入了一个高光谱提示模块,以较低的计算成本有效地将hsi内的数据相关信息传输到RGB模式。此外,我们还引入了一个适配器模块来调整RGB分支的冻结参数,以确保快速适应高光谱跟踪任务。我们提出的网络在基准测试中取得了最佳性能,验证了所提方法的有效性。我们的代码和其他结果可在:https://github.com/972821054/VPH.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A visual prompt learning network for hyperspectral object tracking
Hyperspectral object tracking aims to achieve continuous tracking and localization of targets in a series of Hyperspectral images (HSIs) by analyzing and comparing the spectral and spatial features of the targets. Due to the relatively small size of hyperspectral object tracking datasets, existing strategies mainly rely on fine-tuning models initially trained on RGB images and then adapted them to hyperspectral data. However, the transferability of this comprehensive fine-tuning strategy is limited by the deficiencies in the data, resulting in suboptimal performance and limited results in hyperspectral object tracking. To address these challenges, we propose a visual prompt learning network for hyperspectral object tracking (VPH). In this approach, we freeze all the parameters of the model trained on RGB images and introduce a hyperspectral prompt module to efficiently transfer data-related information within HSIs to the RGB modality at a lower computational cost. In addition, we introduce an adapter module to adjust the frozen parameters of the RGB branch, ensuring fast adaptation to the hyperspectral tracking task. Our proposed network achieves the best performance in benchmark tests, validating the effectiveness of the proposed method. Our code and additional results are available at: https://github.com/972821054/VPH.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信