时变Maxwell方程的显式骨架不连续Galerkin格式的新误差分析

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Achyuta Ranjan Dutta Mohapatra, Bhupen Deka
{"title":"时变Maxwell方程的显式骨架不连续Galerkin格式的新误差分析","authors":"Achyuta Ranjan Dutta Mohapatra,&nbsp;Bhupen Deka","doi":"10.1016/j.apnum.2025.05.011","DOIUrl":null,"url":null,"abstract":"<div><div>This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined <span><math><mi>H</mi><mtext>(curl)</mtext></math></span>-norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 18-42"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new error analysis of an explicit skeletal discontinuous Galerkin scheme for time-dependent Maxwell equations\",\"authors\":\"Achyuta Ranjan Dutta Mohapatra,&nbsp;Bhupen Deka\",\"doi\":\"10.1016/j.apnum.2025.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined <span><math><mi>H</mi><mtext>(curl)</mtext></math></span>-norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"217 \",\"pages\":\"Pages 18-42\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001175\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二阶随时间变化的麦克斯韦方程组在导电介质和非导电介质中的收敛性分析。首先,采用骨架不连续伽辽金方法进行空间离散化,然后建立一些必要的工具来推导稳定性和误差估计。在适当的初始数据正则性假设下,证明了离散定义H(旋度)范数半离散问题的稳定性和误差的最优收敛性。其次,利用显式Leap-frog格式将时间离散化应用于半离散系统,并在离散能量范数中实现了最优误差界O(τ2+hk), k≥1为多项式近似度。最后,通过计算实验对理论结论进行了验证。文献中缺少对导电介质中二阶麦克斯韦方程组的多边形/多面体网格中显式完全离散格式的误差分析,我们打算在本文中填补这一空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new error analysis of an explicit skeletal discontinuous Galerkin scheme for time-dependent Maxwell equations
This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined H(curl)-norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds O(τ2+hk), k1 is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信