{"title":"时变Maxwell方程的显式骨架不连续Galerkin格式的新误差分析","authors":"Achyuta Ranjan Dutta Mohapatra, Bhupen Deka","doi":"10.1016/j.apnum.2025.05.011","DOIUrl":null,"url":null,"abstract":"<div><div>This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined <span><math><mi>H</mi><mtext>(curl)</mtext></math></span>-norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 18-42"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new error analysis of an explicit skeletal discontinuous Galerkin scheme for time-dependent Maxwell equations\",\"authors\":\"Achyuta Ranjan Dutta Mohapatra, Bhupen Deka\",\"doi\":\"10.1016/j.apnum.2025.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined <span><math><mi>H</mi><mtext>(curl)</mtext></math></span>-norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"217 \",\"pages\":\"Pages 18-42\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001175\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new error analysis of an explicit skeletal discontinuous Galerkin scheme for time-dependent Maxwell equations
This article focuses on the convergence analysis of second-order time-dependent Maxwell equations in conducting and non-conducting media. Firstly, the spatial discretization is made using a skeletal discontinuous Galerkin method, and then some essential tools are established to deduce the stability and error estimates. Under suitable regularity assumptions on initial data, stability and optimal convergence of the error are proved for the semi-discrete problem in a discretely defined -norm. Next, temporal discretization is applied to the semi-discrete system by using the explicit Leap-frog schemes and optimal error bounds , is the degree of polynomial approximation, are achieved in the discrete energy norm. Finally, computational experiments are performed to validate the theoretical conclusions. Error analysis of explicit fully discrete schemes in polygonal/polyhedral meshes for the second-order Maxwell equations in a conducting media is missing in the literature, and we intend to fill this gap in the current article.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.