w -加权核-电位矩阵的进一步表征

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ehsan Kheirandish , Abbas Salemi , Qing-Wen Wang
{"title":"w -加权核-电位矩阵的进一步表征","authors":"Ehsan Kheirandish ,&nbsp;Abbas Salemi ,&nbsp;Qing-Wen Wang","doi":"10.1016/j.cam.2025.116788","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that <span><math><mrow><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≠</mo><mi>W</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. The matrix <span><math><mi>A</mi></math></span> is called W-weighted core-EP matrix, if <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><mi>W</mi><mo>=</mo><mi>W</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></math></span> where <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup></math></span> is the <span><math><mi>W</mi></math></span>-weighted core part of <span><math><mi>A</mi></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> represents the Moore–Penrose inverse of <span><math><mi>A</mi></math></span>. In this paper, some equivalent conditions of <span><math><mi>W</mi></math></span>-weighted core-EP matrices are investigated. Moreover, the W-weighted core part of <span><math><mi>A</mi></math></span> is introduced, and characterizations of <span><math><mi>W</mi></math></span>-weighted <em>DMP</em>, <span><math><mi>W</mi></math></span>-weighted <em>MPD</em>, and <span><math><mi>W</mi></math></span>-weighted <em>CMP</em> inverses are given. Finally, applications of the W-weighted core part of <span><math><mi>A</mi></math></span> in solving singular linear systems are studied.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"472 ","pages":"Article 116788"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further characterizations of W-weighted core-EP matrices\",\"authors\":\"Ehsan Kheirandish ,&nbsp;Abbas Salemi ,&nbsp;Qing-Wen Wang\",\"doi\":\"10.1016/j.cam.2025.116788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose that <span><math><mrow><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≠</mo><mi>W</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. The matrix <span><math><mi>A</mi></math></span> is called W-weighted core-EP matrix, if <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><mi>W</mi><mo>=</mo><mi>W</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></math></span> where <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup></math></span> is the <span><math><mi>W</mi></math></span>-weighted core part of <span><math><mi>A</mi></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> represents the Moore–Penrose inverse of <span><math><mi>A</mi></math></span>. In this paper, some equivalent conditions of <span><math><mi>W</mi></math></span>-weighted core-EP matrices are investigated. Moreover, the W-weighted core part of <span><math><mi>A</mi></math></span> is introduced, and characterizations of <span><math><mi>W</mi></math></span>-weighted <em>DMP</em>, <span><math><mi>W</mi></math></span>-weighted <em>MPD</em>, and <span><math><mi>W</mi></math></span>-weighted <em>CMP</em> inverses are given. Finally, applications of the W-weighted core part of <span><math><mi>A</mi></math></span> in solving singular linear systems are studied.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 116788\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725003024\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

假设A∈Mm,n()且0≠W∈Mn,m()。若矩阵A†Ac,WW=WAc,WA†,其中Ac,W是A的W加权核心部分,A†表示A的Moore-Penrose逆,则矩阵A称为W加权核心- ep矩阵。此外,还引入了A的w加权核心部分,给出了w加权DMP、w加权MPD和w加权CMP逆的表征。最后,研究了A的w加权核心部分在求解奇异线性系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further characterizations of W-weighted core-EP matrices
Suppose that AMm,n() and 0WMn,m(). The matrix A is called W-weighted core-EP matrix, if AAc,WW=WAc,WA where Ac,W is the W-weighted core part of A, and A represents the Moore–Penrose inverse of A. In this paper, some equivalent conditions of W-weighted core-EP matrices are investigated. Moreover, the W-weighted core part of A is introduced, and characterizations of W-weighted DMP, W-weighted MPD, and W-weighted CMP inverses are given. Finally, applications of the W-weighted core part of A in solving singular linear systems are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信