{"title":"w -加权核-电位矩阵的进一步表征","authors":"Ehsan Kheirandish , Abbas Salemi , Qing-Wen Wang","doi":"10.1016/j.cam.2025.116788","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that <span><math><mrow><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≠</mo><mi>W</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. The matrix <span><math><mi>A</mi></math></span> is called W-weighted core-EP matrix, if <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><mi>W</mi><mo>=</mo><mi>W</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></math></span> where <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup></math></span> is the <span><math><mi>W</mi></math></span>-weighted core part of <span><math><mi>A</mi></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> represents the Moore–Penrose inverse of <span><math><mi>A</mi></math></span>. In this paper, some equivalent conditions of <span><math><mi>W</mi></math></span>-weighted core-EP matrices are investigated. Moreover, the W-weighted core part of <span><math><mi>A</mi></math></span> is introduced, and characterizations of <span><math><mi>W</mi></math></span>-weighted <em>DMP</em>, <span><math><mi>W</mi></math></span>-weighted <em>MPD</em>, and <span><math><mi>W</mi></math></span>-weighted <em>CMP</em> inverses are given. Finally, applications of the W-weighted core part of <span><math><mi>A</mi></math></span> in solving singular linear systems are studied.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"472 ","pages":"Article 116788"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further characterizations of W-weighted core-EP matrices\",\"authors\":\"Ehsan Kheirandish , Abbas Salemi , Qing-Wen Wang\",\"doi\":\"10.1016/j.cam.2025.116788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose that <span><math><mrow><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>≠</mo><mi>W</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. The matrix <span><math><mi>A</mi></math></span> is called W-weighted core-EP matrix, if <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><mi>W</mi><mo>=</mo><mi>W</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></math></span> where <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>W</mi></mrow></msup></math></span> is the <span><math><mi>W</mi></math></span>-weighted core part of <span><math><mi>A</mi></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> represents the Moore–Penrose inverse of <span><math><mi>A</mi></math></span>. In this paper, some equivalent conditions of <span><math><mi>W</mi></math></span>-weighted core-EP matrices are investigated. Moreover, the W-weighted core part of <span><math><mi>A</mi></math></span> is introduced, and characterizations of <span><math><mi>W</mi></math></span>-weighted <em>DMP</em>, <span><math><mi>W</mi></math></span>-weighted <em>MPD</em>, and <span><math><mi>W</mi></math></span>-weighted <em>CMP</em> inverses are given. Finally, applications of the W-weighted core part of <span><math><mi>A</mi></math></span> in solving singular linear systems are studied.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 116788\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725003024\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Further characterizations of W-weighted core-EP matrices
Suppose that and . The matrix is called W-weighted core-EP matrix, if where is the -weighted core part of , and represents the Moore–Penrose inverse of . In this paper, some equivalent conditions of -weighted core-EP matrices are investigated. Moreover, the W-weighted core part of is introduced, and characterizations of -weighted DMP, -weighted MPD, and -weighted CMP inverses are given. Finally, applications of the W-weighted core part of in solving singular linear systems are studied.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.