Xiaojia Zhao , Weiyin Gao , Jianxiong Yang , Zelin Wang , Zhenhuang Su , Lingfeng Chao , He Dong , Xingyu Gao , Yonghua Chen , Chenxin Ran
{"title":"空气沉积微米颗粒铅锡钙钛矿薄膜的点阵活化,实现高效稳定的理想带隙太阳能电池","authors":"Xiaojia Zhao , Weiyin Gao , Jianxiong Yang , Zelin Wang , Zhenhuang Su , Lingfeng Chao , He Dong , Xingyu Gao , Yonghua Chen , Chenxin Ran","doi":"10.1016/j.jechem.2025.05.023","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-tin (Pb-Sn) perovskites with an ideal bandgap of 1.34–1.40 eV show great promise in perovskite solar cells (PSCs). Recently, to address the environmental pollution and Sn<sup>2+</sup> oxidation problems of dimethyl sulfoxide, methylammonium acetate (MAAc) ionic liquid has been developed as an alternative to fabricate ideal bandgap MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub> (1.36 eV) film via hot-casting in air. However, the spontaneous crystallization of Pb-Sn perovskite initiated by heat-induced supersaturation is fast and random, setting critical challenges in regulating crystal growth during the film-forming process. Herein, a lattice activation strategy is developed to control the crystallization dynamics of MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub> in MAAc to produce films with micrometer-sized grains in air. FA is shown to activate the crystal lattice that facilitates the formation of intermediates and balances the crystal growth of MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub>, producing films with a grain size of 2.78 ± 0.17 μm. Furthermore, 4-fluoro-phenethylammonium and phenethylammonium are adopted to passivate the defects in the film and promote the energy level alignment at the top interface, respectively. The optimized PSC device achieved an efficiency of 18.24% with a short-circuit current of 29.84 mA/cm<sup>2</sup>, which are both the highest values in 1.36 eV Pb-Sn PSCs to date. Notably, the unencapsulated devices show excellent storage and air stability under various conditions.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 808-818"},"PeriodicalIF":13.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice activation for air deposition of micrometer-grain Pb-Sn perovskite film realizing efficient and stable ideal-bandgap solar cells\",\"authors\":\"Xiaojia Zhao , Weiyin Gao , Jianxiong Yang , Zelin Wang , Zhenhuang Su , Lingfeng Chao , He Dong , Xingyu Gao , Yonghua Chen , Chenxin Ran\",\"doi\":\"10.1016/j.jechem.2025.05.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead-tin (Pb-Sn) perovskites with an ideal bandgap of 1.34–1.40 eV show great promise in perovskite solar cells (PSCs). Recently, to address the environmental pollution and Sn<sup>2+</sup> oxidation problems of dimethyl sulfoxide, methylammonium acetate (MAAc) ionic liquid has been developed as an alternative to fabricate ideal bandgap MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub> (1.36 eV) film via hot-casting in air. However, the spontaneous crystallization of Pb-Sn perovskite initiated by heat-induced supersaturation is fast and random, setting critical challenges in regulating crystal growth during the film-forming process. Herein, a lattice activation strategy is developed to control the crystallization dynamics of MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub> in MAAc to produce films with micrometer-sized grains in air. FA is shown to activate the crystal lattice that facilitates the formation of intermediates and balances the crystal growth of MAPb<sub>0.7</sub>Sn<sub>0.3</sub>I<sub>3</sub>, producing films with a grain size of 2.78 ± 0.17 μm. Furthermore, 4-fluoro-phenethylammonium and phenethylammonium are adopted to passivate the defects in the film and promote the energy level alignment at the top interface, respectively. The optimized PSC device achieved an efficiency of 18.24% with a short-circuit current of 29.84 mA/cm<sup>2</sup>, which are both the highest values in 1.36 eV Pb-Sn PSCs to date. Notably, the unencapsulated devices show excellent storage and air stability under various conditions.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"108 \",\"pages\":\"Pages 808-818\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625004164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Lattice activation for air deposition of micrometer-grain Pb-Sn perovskite film realizing efficient and stable ideal-bandgap solar cells
Lead-tin (Pb-Sn) perovskites with an ideal bandgap of 1.34–1.40 eV show great promise in perovskite solar cells (PSCs). Recently, to address the environmental pollution and Sn2+ oxidation problems of dimethyl sulfoxide, methylammonium acetate (MAAc) ionic liquid has been developed as an alternative to fabricate ideal bandgap MAPb0.7Sn0.3I3 (1.36 eV) film via hot-casting in air. However, the spontaneous crystallization of Pb-Sn perovskite initiated by heat-induced supersaturation is fast and random, setting critical challenges in regulating crystal growth during the film-forming process. Herein, a lattice activation strategy is developed to control the crystallization dynamics of MAPb0.7Sn0.3I3 in MAAc to produce films with micrometer-sized grains in air. FA is shown to activate the crystal lattice that facilitates the formation of intermediates and balances the crystal growth of MAPb0.7Sn0.3I3, producing films with a grain size of 2.78 ± 0.17 μm. Furthermore, 4-fluoro-phenethylammonium and phenethylammonium are adopted to passivate the defects in the film and promote the energy level alignment at the top interface, respectively. The optimized PSC device achieved an efficiency of 18.24% with a short-circuit current of 29.84 mA/cm2, which are both the highest values in 1.36 eV Pb-Sn PSCs to date. Notably, the unencapsulated devices show excellent storage and air stability under various conditions.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy