{"title":"非典型异离子型谷氨酸受体在电路布线和可塑性中的跨突触功能","authors":"Doris Wennagel, Cécile Charrier","doi":"10.1016/j.conb.2025.103053","DOIUrl":null,"url":null,"abstract":"<div><div>Ionotropic glutamate receptors (iGluRs) mediate the vast majority of fast excitatory synaptic transmission in the mammalian brain. In addition, non-canonical iGluRs of the kainate (GluKs) and delta (GluDs) families serve as trans-synaptic organizers and mediate non-ionotropic signaling in selective types of excitatory and inhibitory synapses. Here, we review recent insights into the roles and mechanisms of these receptors in circuit wiring and plasticity. We highlight their molecular choreography in the specification of excitatory synaptic connectivity, and their expanding role in inhibitory neuronal circuits driven by unexpected pharmacological properties. We discuss how fundamental research on iGluR non-canonical functions and interaction networks in the synaptic cleft fosters novel therapeutic strategies for synapse recovery in neurological disorders and injuries.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103053"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trans-synaptic functions of non-canonical ionotropic glutamate receptors in circuit wiring and plasticity\",\"authors\":\"Doris Wennagel, Cécile Charrier\",\"doi\":\"10.1016/j.conb.2025.103053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ionotropic glutamate receptors (iGluRs) mediate the vast majority of fast excitatory synaptic transmission in the mammalian brain. In addition, non-canonical iGluRs of the kainate (GluKs) and delta (GluDs) families serve as trans-synaptic organizers and mediate non-ionotropic signaling in selective types of excitatory and inhibitory synapses. Here, we review recent insights into the roles and mechanisms of these receptors in circuit wiring and plasticity. We highlight their molecular choreography in the specification of excitatory synaptic connectivity, and their expanding role in inhibitory neuronal circuits driven by unexpected pharmacological properties. We discuss how fundamental research on iGluR non-canonical functions and interaction networks in the synaptic cleft fosters novel therapeutic strategies for synapse recovery in neurological disorders and injuries.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"93 \",\"pages\":\"Article 103053\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000844\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000844","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Trans-synaptic functions of non-canonical ionotropic glutamate receptors in circuit wiring and plasticity
Ionotropic glutamate receptors (iGluRs) mediate the vast majority of fast excitatory synaptic transmission in the mammalian brain. In addition, non-canonical iGluRs of the kainate (GluKs) and delta (GluDs) families serve as trans-synaptic organizers and mediate non-ionotropic signaling in selective types of excitatory and inhibitory synapses. Here, we review recent insights into the roles and mechanisms of these receptors in circuit wiring and plasticity. We highlight their molecular choreography in the specification of excitatory synaptic connectivity, and their expanding role in inhibitory neuronal circuits driven by unexpected pharmacological properties. We discuss how fundamental research on iGluR non-canonical functions and interaction networks in the synaptic cleft fosters novel therapeutic strategies for synapse recovery in neurological disorders and injuries.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience