锂调制金刚石的双功能(110):高效离子输运和可调谐电磁响应的第一性原理研究

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Qingchen Hao , Jing Li , Wenzhe Cheng, Jiyao Fu, Dongchao Qiu
{"title":"锂调制金刚石的双功能(110):高效离子输运和可调谐电磁响应的第一性原理研究","authors":"Qingchen Hao ,&nbsp;Jing Li ,&nbsp;Wenzhe Cheng,&nbsp;Jiyao Fu,&nbsp;Dongchao Qiu","doi":"10.1016/j.physb.2025.417485","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic modulation of electromagnetic properties on the diamond (110) surface via lithium adsorption and migration is investigated using spin-polarized density functional theory. Three adsorption configurations (Dia(110)-Li<sub>S7'</sub>, Dia(110)-Li<sub>S2</sub>, and Dia(110)-Li<sub>S5</sub>) are identified, with Dia(110)-Li<sub>S7'</sub> exhibiting the lowest adsorption energy. Li shows anisotropic migration, with a low energy barrier (0.137 eV) for S7'→S2→S7′ diffusion along the y-axis, outperforming many other anode materials. Reverse migration of S5→S7′ required a higher barrier, confirming S7′ as the dominant adsorption site. This facile migration pathway, coupled with structural stability, makes diamond particles an ideal dopant for Li-ion battery anodes, assisting rapid ion transport and dendrite suppression. Furthermore, Li adsorption induces spin polarization and band structure changes. The reversible transport results in a tunable electronic and magnetic response, suggesting potential applications in adaptive electromagnetic materials and semiconductors. Our findings provide a theoretical basis for utilizing diamond surfaces in energy storage and multifunctional material design.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417485"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-modulated dual-functionality of diamond (110): First-principles study of high-efficiency ion transport and tunable electromagnetic response\",\"authors\":\"Qingchen Hao ,&nbsp;Jing Li ,&nbsp;Wenzhe Cheng,&nbsp;Jiyao Fu,&nbsp;Dongchao Qiu\",\"doi\":\"10.1016/j.physb.2025.417485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dynamic modulation of electromagnetic properties on the diamond (110) surface via lithium adsorption and migration is investigated using spin-polarized density functional theory. Three adsorption configurations (Dia(110)-Li<sub>S7'</sub>, Dia(110)-Li<sub>S2</sub>, and Dia(110)-Li<sub>S5</sub>) are identified, with Dia(110)-Li<sub>S7'</sub> exhibiting the lowest adsorption energy. Li shows anisotropic migration, with a low energy barrier (0.137 eV) for S7'→S2→S7′ diffusion along the y-axis, outperforming many other anode materials. Reverse migration of S5→S7′ required a higher barrier, confirming S7′ as the dominant adsorption site. This facile migration pathway, coupled with structural stability, makes diamond particles an ideal dopant for Li-ion battery anodes, assisting rapid ion transport and dendrite suppression. Furthermore, Li adsorption induces spin polarization and band structure changes. The reversible transport results in a tunable electronic and magnetic response, suggesting potential applications in adaptive electromagnetic materials and semiconductors. Our findings provide a theoretical basis for utilizing diamond surfaces in energy storage and multifunctional material design.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417485\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625006027\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

利用自旋极化密度泛函理论研究了锂离子吸附和迁移对金刚石(110)表面电磁特性的动态调制。发现了3种吸附构型(Dia(110)-LiS7‘、Dia(110)-LiS2和Dia(110)-LiS5),其中Dia(110)-LiS7’的吸附能最低。Li表现出各向异性迁移,S7‘→S2→S7 ’沿y轴扩散具有低能垒(0.137 eV),优于许多其他阳极材料。S5→S7’的反向迁移需要更高的屏障,这证实了S7’是主要的吸附位点。这种易于迁移的途径,加上结构的稳定性,使金刚石颗粒成为锂离子电池阳极的理想掺杂剂,有助于快速离子传输和抑制枝晶。此外,Li吸附引起了自旋极化和能带结构的变化。可逆输运导致可调谐的电子和磁响应,表明在自适应电磁材料和半导体中的潜在应用。研究结果为金刚石表面在储能和多功能材料设计中的应用提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium-modulated dual-functionality of diamond (110): First-principles study of high-efficiency ion transport and tunable electromagnetic response
The dynamic modulation of electromagnetic properties on the diamond (110) surface via lithium adsorption and migration is investigated using spin-polarized density functional theory. Three adsorption configurations (Dia(110)-LiS7', Dia(110)-LiS2, and Dia(110)-LiS5) are identified, with Dia(110)-LiS7' exhibiting the lowest adsorption energy. Li shows anisotropic migration, with a low energy barrier (0.137 eV) for S7'→S2→S7′ diffusion along the y-axis, outperforming many other anode materials. Reverse migration of S5→S7′ required a higher barrier, confirming S7′ as the dominant adsorption site. This facile migration pathway, coupled with structural stability, makes diamond particles an ideal dopant for Li-ion battery anodes, assisting rapid ion transport and dendrite suppression. Furthermore, Li adsorption induces spin polarization and band structure changes. The reversible transport results in a tunable electronic and magnetic response, suggesting potential applications in adaptive electromagnetic materials and semiconductors. Our findings provide a theoretical basis for utilizing diamond surfaces in energy storage and multifunctional material design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信