Cheng Chen , Guan-Nian Chen , Song Feng , Xiao-Zhen Fan , Liang-Tong Zhan , Yun-Min Chen
{"title":"基于改进粒子群算法和极限学习机的稀疏测量方法预测开挖引起的侧向位移","authors":"Cheng Chen , Guan-Nian Chen , Song Feng , Xiao-Zhen Fan , Liang-Tong Zhan , Yun-Min Chen","doi":"10.1016/j.undsp.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring lateral displacement in deep excavation projects is crucial for structural stability and safety. Traditional methods, like manual inclinometers, are accurate but costly and labor-intensive. Automated systems provide real-time data but face challenges with dense sensor placement and high costs. This study presents a novel prediction method using an extreme learning machine (ELM) optimized by an improved particle swarm optimization (IPSO) algorithm. The IPSO-ELM approach utilizes sparse automated measurements to accurately predict lateral displacement profiles, minimizing the need for dense sensor deployment. A case study of a 30.2-m-deep excavation project in Hangzhou, China, demonstrates the method’s effectiveness. The results demonstrate that the IPSO-ELM model maintains high prediction accuracy, with low root mean square error (RMSE) and mean absolute error (MAE) values, even under conditions of sparse sensor placement. Across the entire test dataset, with a sensor spacing of 5.0 m, the model achieved maximum RMSE values ranging from 0.94 to 2.79 mm and maximum MAE values ranging from 0.77 to 2.18 mm, thereby showcasing its robustness and reliability in predicting lateral displacement. A detailed discussion was conducted on the errors associated with various sensor spacing intervals when implementing the proposed method. This study underscores the potential of IPSO-ELM as a cost-effective and reliable tool for automatic monitoring in increasingly complex urban excavation projects.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 125-145"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting excavation-induced lateral displacement using improved particle swarm optimization and extreme learning machine with sparse measurements\",\"authors\":\"Cheng Chen , Guan-Nian Chen , Song Feng , Xiao-Zhen Fan , Liang-Tong Zhan , Yun-Min Chen\",\"doi\":\"10.1016/j.undsp.2025.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring lateral displacement in deep excavation projects is crucial for structural stability and safety. Traditional methods, like manual inclinometers, are accurate but costly and labor-intensive. Automated systems provide real-time data but face challenges with dense sensor placement and high costs. This study presents a novel prediction method using an extreme learning machine (ELM) optimized by an improved particle swarm optimization (IPSO) algorithm. The IPSO-ELM approach utilizes sparse automated measurements to accurately predict lateral displacement profiles, minimizing the need for dense sensor deployment. A case study of a 30.2-m-deep excavation project in Hangzhou, China, demonstrates the method’s effectiveness. The results demonstrate that the IPSO-ELM model maintains high prediction accuracy, with low root mean square error (RMSE) and mean absolute error (MAE) values, even under conditions of sparse sensor placement. Across the entire test dataset, with a sensor spacing of 5.0 m, the model achieved maximum RMSE values ranging from 0.94 to 2.79 mm and maximum MAE values ranging from 0.77 to 2.18 mm, thereby showcasing its robustness and reliability in predicting lateral displacement. A detailed discussion was conducted on the errors associated with various sensor spacing intervals when implementing the proposed method. This study underscores the potential of IPSO-ELM as a cost-effective and reliable tool for automatic monitoring in increasingly complex urban excavation projects.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"23 \",\"pages\":\"Pages 125-145\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967425000406\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000406","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Predicting excavation-induced lateral displacement using improved particle swarm optimization and extreme learning machine with sparse measurements
Monitoring lateral displacement in deep excavation projects is crucial for structural stability and safety. Traditional methods, like manual inclinometers, are accurate but costly and labor-intensive. Automated systems provide real-time data but face challenges with dense sensor placement and high costs. This study presents a novel prediction method using an extreme learning machine (ELM) optimized by an improved particle swarm optimization (IPSO) algorithm. The IPSO-ELM approach utilizes sparse automated measurements to accurately predict lateral displacement profiles, minimizing the need for dense sensor deployment. A case study of a 30.2-m-deep excavation project in Hangzhou, China, demonstrates the method’s effectiveness. The results demonstrate that the IPSO-ELM model maintains high prediction accuracy, with low root mean square error (RMSE) and mean absolute error (MAE) values, even under conditions of sparse sensor placement. Across the entire test dataset, with a sensor spacing of 5.0 m, the model achieved maximum RMSE values ranging from 0.94 to 2.79 mm and maximum MAE values ranging from 0.77 to 2.18 mm, thereby showcasing its robustness and reliability in predicting lateral displacement. A detailed discussion was conducted on the errors associated with various sensor spacing intervals when implementing the proposed method. This study underscores the potential of IPSO-ELM as a cost-effective and reliable tool for automatic monitoring in increasingly complex urban excavation projects.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.