多层饱和横向各向同性土中埋置能量桩时变性研究

IF 8.3 1区 工程技术 Q1 ENGINEERING, CIVIL
Yongzhi Zhao, Zhenming Shi, Zhiyong Ai
{"title":"多层饱和横向各向同性土中埋置能量桩时变性研究","authors":"Yongzhi Zhao,&nbsp;Zhenming Shi,&nbsp;Zhiyong Ai","doi":"10.1016/j.undsp.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a solution for the time-dependent behaviors of energy piles embedded in transversely isotropic soils, which considers the mechanical and thermal consolidation. By using the transformed differential quadrature method, kernel functions of coupled thermal-hydro-mechanical solution on the soil-energy pile interface are obtained and the boundary integration is conducted. Then, the energy pile is discretized into finite elements. After introducing the displacement coordination and boundary conditions, matrix equations to reflect the interaction between the surrounding soils and energy piles are formulated and solved. Since the consolidation is considered, the solution for energy pile behaviors with time including displacements and thermal stresses are achieved. Computational results are compared with data of existed literatures and field tests to validate the theory in this study. Finally, numerical examples are conducted to discuss the effects of transverse isotropy of soils, consolidation process and the length-diameter ratio of the energy pile.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"23 ","pages":"Pages 113-124"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-dependent behaviors of energy piles embedded in multilayered saturated transversely isotropic soils\",\"authors\":\"Yongzhi Zhao,&nbsp;Zhenming Shi,&nbsp;Zhiyong Ai\",\"doi\":\"10.1016/j.undsp.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a solution for the time-dependent behaviors of energy piles embedded in transversely isotropic soils, which considers the mechanical and thermal consolidation. By using the transformed differential quadrature method, kernel functions of coupled thermal-hydro-mechanical solution on the soil-energy pile interface are obtained and the boundary integration is conducted. Then, the energy pile is discretized into finite elements. After introducing the displacement coordination and boundary conditions, matrix equations to reflect the interaction between the surrounding soils and energy piles are formulated and solved. Since the consolidation is considered, the solution for energy pile behaviors with time including displacements and thermal stresses are achieved. Computational results are compared with data of existed literatures and field tests to validate the theory in this study. Finally, numerical examples are conducted to discuss the effects of transverse isotropy of soils, consolidation process and the length-diameter ratio of the energy pile.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"23 \",\"pages\":\"Pages 113-124\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424001259\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001259","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种考虑力学固结和热固结的横向各向同性土中能量桩的时效特性求解方法。利用变换微分正交法,得到了土-能桩界面上热-水-力耦合解的核函数,并进行了边界积分。然后,将能量桩离散为有限元。在引入位移协调和边界条件后,建立并求解了反映周围土体与能量桩相互作用的矩阵方程。由于考虑固结,得到了能量桩位移和热应力随时间变化的解。计算结果与已有文献和现场试验数据进行了比较,验证了本文的理论。最后,通过数值算例讨论了土体横向各向同性、固结过程和能量桩长径比对能量桩稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-dependent behaviors of energy piles embedded in multilayered saturated transversely isotropic soils
This paper presents a solution for the time-dependent behaviors of energy piles embedded in transversely isotropic soils, which considers the mechanical and thermal consolidation. By using the transformed differential quadrature method, kernel functions of coupled thermal-hydro-mechanical solution on the soil-energy pile interface are obtained and the boundary integration is conducted. Then, the energy pile is discretized into finite elements. After introducing the displacement coordination and boundary conditions, matrix equations to reflect the interaction between the surrounding soils and energy piles are formulated and solved. Since the consolidation is considered, the solution for energy pile behaviors with time including displacements and thermal stresses are achieved. Computational results are compared with data of existed literatures and field tests to validate the theory in this study. Finally, numerical examples are conducted to discuss the effects of transverse isotropy of soils, consolidation process and the length-diameter ratio of the energy pile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信