非紧化自收缩器上的对数Sobolev不等式

IF 1.7 2区 数学 Q1 MATHEMATICS
Guofang Wang , Chao Xia , Xiqiang Zhang
{"title":"非紧化自收缩器上的对数Sobolev不等式","authors":"Guofang Wang ,&nbsp;Chao Xia ,&nbsp;Xiqiang Zhang","doi":"10.1016/j.jfa.2025.111085","DOIUrl":null,"url":null,"abstract":"<div><div>In the paper we establish an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which generalizes a recent result of Brendle <span><span>[10]</span></span> for closed self-shrinkers. We first provide a proof for the logarithmic Sobolev inequality in the Euclidean space by using the Alexandrov-Bakelman-Pucci (ABP) method. Then we use this approach to show an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which is a sharp version of the result of Ecker in <span><span>[21]</span></span>. The proof is a noncompact modification of Brendle's proof for closed submanifolds and has a big potential to provide new inequalities in noncompact manifolds.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111085"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The logarithmic Sobolev inequality on non-compact self-shrinkers\",\"authors\":\"Guofang Wang ,&nbsp;Chao Xia ,&nbsp;Xiqiang Zhang\",\"doi\":\"10.1016/j.jfa.2025.111085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the paper we establish an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which generalizes a recent result of Brendle <span><span>[10]</span></span> for closed self-shrinkers. We first provide a proof for the logarithmic Sobolev inequality in the Euclidean space by using the Alexandrov-Bakelman-Pucci (ABP) method. Then we use this approach to show an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which is a sharp version of the result of Ecker in <span><span>[21]</span></span>. The proof is a noncompact modification of Brendle's proof for closed submanifolds and has a big potential to provide new inequalities in noncompact manifolds.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111085\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002678\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了欧几里德空间中完备、非紧、适当嵌入自收缩子的最优对数Sobolev不等式,推广了Brendle[10]关于闭自收缩子的最新结果。本文首先利用ABP方法证明了对数Sobolev不等式在欧几里德空间中的存在性。然后,我们用这种方法证明了欧几里德空间中完全的、非紧的、适当嵌入的自收缩体的最优对数Sobolev不等式,这是Ecker在[21]中的结果的一个尖锐版本。该证明是对Brendle闭子流形证明的非紧化改进,具有提供非紧流形中新不等式的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The logarithmic Sobolev inequality on non-compact self-shrinkers
In the paper we establish an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which generalizes a recent result of Brendle [10] for closed self-shrinkers. We first provide a proof for the logarithmic Sobolev inequality in the Euclidean space by using the Alexandrov-Bakelman-Pucci (ABP) method. Then we use this approach to show an optimal logarithmic Sobolev inequality for complete, non-compact, properly embedded self-shrinkers in the Euclidean space, which is a sharp version of the result of Ecker in [21]. The proof is a noncompact modification of Brendle's proof for closed submanifolds and has a big potential to provide new inequalities in noncompact manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信