InN/InGaN多层量子点的光吸收和光电性能:约束、入分和内置电场的影响

IF 6 2区 工程技术 Q2 ENERGY & FUELS
M. Hbibi , S. Chouef , R. Boussetta , A. El Moussaouy , O. Mommadi , C.A. Duque
{"title":"InN/InGaN多层量子点的光吸收和光电性能:约束、入分和内置电场的影响","authors":"M. Hbibi ,&nbsp;S. Chouef ,&nbsp;R. Boussetta ,&nbsp;A. El Moussaouy ,&nbsp;O. Mommadi ,&nbsp;C.A. Duque","doi":"10.1016/j.solener.2025.113620","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of the confinement potential, indium fraction, and internal electric fields on the optical and photovoltaic properties of multilayer InN/InGaN quantum dots. Using the effective mass approximation and a variational method to solve the Schrödinger equation, we analyze how core, shell dimensions, and In-fraction variations affect energy levels, absorption spectra, and solar cell performance. The results show that increasing In-fraction in the inner layer lowers carrier energy levels due to reduced confinement, particularly in structures with small core radii. A thinner initial shell enhances the photocurrent and energy-conversion efficiency. The calculated absorption coefficients exhibit a blue shift with increasing core and shell size, confirming strong quantum confinement effects. Furthermore, stronger confinement and internal electric fields lead to higher energy absorption peaks with reduced intensity. These findings highlight the potential of optimized InN/InGaN quantum dot architectures for efficient optoelectronic and photovoltaic applications.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"298 ","pages":"Article 113620"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical absorption and photovoltaic performance in InN/InGaN multilayer quantum dots: Effects of confinement, in-fraction, and built-in electric field\",\"authors\":\"M. Hbibi ,&nbsp;S. Chouef ,&nbsp;R. Boussetta ,&nbsp;A. El Moussaouy ,&nbsp;O. Mommadi ,&nbsp;C.A. Duque\",\"doi\":\"10.1016/j.solener.2025.113620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of the confinement potential, indium fraction, and internal electric fields on the optical and photovoltaic properties of multilayer InN/InGaN quantum dots. Using the effective mass approximation and a variational method to solve the Schrödinger equation, we analyze how core, shell dimensions, and In-fraction variations affect energy levels, absorption spectra, and solar cell performance. The results show that increasing In-fraction in the inner layer lowers carrier energy levels due to reduced confinement, particularly in structures with small core radii. A thinner initial shell enhances the photocurrent and energy-conversion efficiency. The calculated absorption coefficients exhibit a blue shift with increasing core and shell size, confirming strong quantum confinement effects. Furthermore, stronger confinement and internal electric fields lead to higher energy absorption peaks with reduced intensity. These findings highlight the potential of optimized InN/InGaN quantum dot architectures for efficient optoelectronic and photovoltaic applications.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"298 \",\"pages\":\"Article 113620\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25003834\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25003834","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了约束势、铟含量和内部电场对多层InN/InGaN量子点光学和光伏性能的影响。利用有效质量近似和变分方法求解Schrödinger方程,我们分析了核、壳尺寸和In-fraction变化如何影响能级、吸收光谱和太阳能电池性能。结果表明,内层in分数的增加由于约束的减少而降低了载流子能级,特别是在核半径较小的结构中。更薄的初始壳层提高了光电流和能量转换效率。计算出的吸收系数随核壳尺寸的增大而发生蓝移,证实了强量子约束效应。此外,更强的约束场和内部电场导致能量吸收峰随着强度的减小而增大。这些发现突出了优化的InN/InGaN量子点架构在高效光电和光伏应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical absorption and photovoltaic performance in InN/InGaN multilayer quantum dots: Effects of confinement, in-fraction, and built-in electric field
This study investigates the impact of the confinement potential, indium fraction, and internal electric fields on the optical and photovoltaic properties of multilayer InN/InGaN quantum dots. Using the effective mass approximation and a variational method to solve the Schrödinger equation, we analyze how core, shell dimensions, and In-fraction variations affect energy levels, absorption spectra, and solar cell performance. The results show that increasing In-fraction in the inner layer lowers carrier energy levels due to reduced confinement, particularly in structures with small core radii. A thinner initial shell enhances the photocurrent and energy-conversion efficiency. The calculated absorption coefficients exhibit a blue shift with increasing core and shell size, confirming strong quantum confinement effects. Furthermore, stronger confinement and internal electric fields lead to higher energy absorption peaks with reduced intensity. These findings highlight the potential of optimized InN/InGaN quantum dot architectures for efficient optoelectronic and photovoltaic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信