基于傅里叶神经算子的裂缝性地热储层温度场预测模型:考虑不同裂缝形态和注采参数

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS
Yu Shi , Congyue Liu , Xianzhi Song , Shuaitao Yan
{"title":"基于傅里叶神经算子的裂缝性地热储层温度场预测模型:考虑不同裂缝形态和注采参数","authors":"Yu Shi ,&nbsp;Congyue Liu ,&nbsp;Xianzhi Song ,&nbsp;Shuaitao Yan","doi":"10.1016/j.geothermics.2025.103404","DOIUrl":null,"url":null,"abstract":"<div><div>Geothermal energy is a pristine source of clean energy. The repetitive numerical simulation of diverse injection parameters and fracture morphology represents a pivotal aspect in optimizing the development strategy for the efficient exploitation of fractured thermal reservoirs related to a number of practical demands: (1) quantifying how fracture morphology patterns govern thermal migration and heat extraction efficiency (2) simulating injection protocols to mitigate premature thermal breakthrough, and (3) assessing long-term reservoir sustainability under variable operational loads. Considering conventional numerical simulations struggle with computational complexity and latency, we propose a dataset construction framework coupled with a Fourier Neural Operator (FNO) model tailored to capture the interplay between fracture morphology variability and boundary condition dynamics. Initializing with near-pristine temperature fields, accurately mapping temporal temperature evolutions across 6-, 24-, and 60-month afterwards while accounting for geometrically complex fracture networks and operational parameters such as injection temperature/flow rate. Integrating these specialized models, we are able to generate extensive prediction results over an ultra-long period of time, spanning from 5 to 15 years, using a relatively arbitrary input within 1 min, requiring one input. Resolving these critical engineering unknowns with high computational efficiency, the framework enables real-time adaptive workflows, risk-informed drilling decisions, and sustainable yield maximization—advancements for geothermal project viability in fractured reservoirs.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"131 ","pages":"Article 103404"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier neural operator-based temperature field prediction model for fractured geothermal reservoirs: addressing diverse fracture morphologies and injection-production parameters\",\"authors\":\"Yu Shi ,&nbsp;Congyue Liu ,&nbsp;Xianzhi Song ,&nbsp;Shuaitao Yan\",\"doi\":\"10.1016/j.geothermics.2025.103404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geothermal energy is a pristine source of clean energy. The repetitive numerical simulation of diverse injection parameters and fracture morphology represents a pivotal aspect in optimizing the development strategy for the efficient exploitation of fractured thermal reservoirs related to a number of practical demands: (1) quantifying how fracture morphology patterns govern thermal migration and heat extraction efficiency (2) simulating injection protocols to mitigate premature thermal breakthrough, and (3) assessing long-term reservoir sustainability under variable operational loads. Considering conventional numerical simulations struggle with computational complexity and latency, we propose a dataset construction framework coupled with a Fourier Neural Operator (FNO) model tailored to capture the interplay between fracture morphology variability and boundary condition dynamics. Initializing with near-pristine temperature fields, accurately mapping temporal temperature evolutions across 6-, 24-, and 60-month afterwards while accounting for geometrically complex fracture networks and operational parameters such as injection temperature/flow rate. Integrating these specialized models, we are able to generate extensive prediction results over an ultra-long period of time, spanning from 5 to 15 years, using a relatively arbitrary input within 1 min, requiring one input. Resolving these critical engineering unknowns with high computational efficiency, the framework enables real-time adaptive workflows, risk-informed drilling decisions, and sustainable yield maximization—advancements for geothermal project viability in fractured reservoirs.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"131 \",\"pages\":\"Article 103404\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650525001555\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525001555","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地热能是一种原始的清洁能源。不同注入参数和裂缝形态的重复数值模拟是优化裂缝性热储高效开采开发策略的关键方面,涉及许多实际需求:(1)量化裂缝形态模式对热运移和采热效率的影响;(2)模拟注入方案以缓解过早的热突破;(3)评估不同运行负荷下储层的长期可持续性。考虑到传统数值模拟的计算复杂性和延迟性,我们提出了一个数据集构建框架,结合傅立叶神经算子(FNO)模型,以捕捉裂缝形态变化和边界条件动态之间的相互作用。通过初始化接近原始的温度场,在考虑复杂的几何裂缝网络和注入温度/流量等操作参数的情况下,准确绘制6、24和60个月后的温度演化图。整合这些专门的模型,我们能够在5到15年的超长时间内生成广泛的预测结果,使用1分钟内相对任意的输入,只需要一次输入。该框架以高计算效率解决了这些关键的工程未知数,实现了实时自适应工作流程、基于风险的钻井决策,并实现了裂缝性储层地热项目可行性的可持续产量最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier neural operator-based temperature field prediction model for fractured geothermal reservoirs: addressing diverse fracture morphologies and injection-production parameters
Geothermal energy is a pristine source of clean energy. The repetitive numerical simulation of diverse injection parameters and fracture morphology represents a pivotal aspect in optimizing the development strategy for the efficient exploitation of fractured thermal reservoirs related to a number of practical demands: (1) quantifying how fracture morphology patterns govern thermal migration and heat extraction efficiency (2) simulating injection protocols to mitigate premature thermal breakthrough, and (3) assessing long-term reservoir sustainability under variable operational loads. Considering conventional numerical simulations struggle with computational complexity and latency, we propose a dataset construction framework coupled with a Fourier Neural Operator (FNO) model tailored to capture the interplay between fracture morphology variability and boundary condition dynamics. Initializing with near-pristine temperature fields, accurately mapping temporal temperature evolutions across 6-, 24-, and 60-month afterwards while accounting for geometrically complex fracture networks and operational parameters such as injection temperature/flow rate. Integrating these specialized models, we are able to generate extensive prediction results over an ultra-long period of time, spanning from 5 to 15 years, using a relatively arbitrary input within 1 min, requiring one input. Resolving these critical engineering unknowns with high computational efficiency, the framework enables real-time adaptive workflows, risk-informed drilling decisions, and sustainable yield maximization—advancements for geothermal project viability in fractured reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信