树型场效应管中双k间隔片集成:减少泄漏和提高性能的比较研究

IF 3 Q2 PHYSICS, CONDENSED MATTER
Dharavath Parvathi, P. Prithvi
{"title":"树型场效应管中双k间隔片集成:减少泄漏和提高性能的比较研究","authors":"Dharavath Parvathi,&nbsp;P. Prithvi","doi":"10.1016/j.micrna.2025.208237","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, the single and dual spacer dielectric performance in a three-channel Tree-FET design is compared in detail for the first time. Different channel lengths extending from 20 nm to 12 nm are systematically evaluated. As device dimensions continue to scale down, traditional spacer designs utilising high-<em>k</em> materials encounter challenges such as increased fringe capacitance and degraded control over leakage. This paper addresses these limitations by investigating a dual-<em>k</em> spacer strategy in Tree-FETs. The device architecture is meticulously optimised, exhibiting a nanosheet height and width of 5 nm and 23 nm, respectively, an inter-bridge height of 5 nm, an inter-bridge width of 8 nm and a channel length of 20 nm–12 nm. To optimise device performance, six dual-<em>k</em> spacer combinations have been meticulously chosen: HfO<sub>2</sub>+Air, HfO<sub>2</sub>+Si<sub>3</sub>N<sub>4</sub>, HfO<sub>2</sub>+SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>+Air, Al<sub>2</sub>O<sub>3</sub>+ Si<sub>3</sub>N<sub>4</sub>, and Al<sub>2</sub>O<sub>3</sub>+ SiO<sub>2</sub>. The findings unequivocally indicate that the HfO<sub>2</sub>+Air dual-<em>k</em> spacer consistently provides superior electrostatic control and markedly boosted DC and analog/RF performance. At a channel length of 20 nm, the HfO<sub>2</sub>+Air configuration attains a remarkably low drain-induced barrier lowering (DIBL) of 24.13 mV/V and an exceptionally steep subthreshold swing (SS) of 60.96 mV/dec, surpassing the single-<em>k</em> HfO<sub>2</sub> spacer, which demonstrates a DIBL of 29.02 mV/V and SS of 61.79 mV/dec. Moreover, the device with the HfO<sub>2</sub>+Air combination exhibits exceptional analog/RF performance, marked by elevated transconductance (gm), diminished output conductance (gds), and a lower cutoff frequency(<em>f</em><sub>T</sub>). This renders the device exceptionally suitable for high-performance and low-frequency applications. As the channel length increases, the advantages of the dual-<em>k</em> spacer become more apparent, leading to a notable improvement in switching performance and a substantial reduction in leakage current. Furthermore, the HfO<sub>2</sub>+Air arrangement routinely attains an <em>I</em><sub>ON</sub>/<em>I</em><sub>OFF</sub> 10<sup>8</sup>, markedly surpassing the <em>I</em><sub>ON</sub>/<em>I</em><sub>OFF</sub> ratio achieved by single-<em>k</em> design. This article highlights the viability of dual-<em>k</em> spacers for the future of semiconductor devices, providing an optimal balance between mitigating short-channel effects and optimising overall device efficiency.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208237"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-K spacer integration in Tree-FETs: A comparative study on leakage reduction and performance enhancement\",\"authors\":\"Dharavath Parvathi,&nbsp;P. Prithvi\",\"doi\":\"10.1016/j.micrna.2025.208237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, the single and dual spacer dielectric performance in a three-channel Tree-FET design is compared in detail for the first time. Different channel lengths extending from 20 nm to 12 nm are systematically evaluated. As device dimensions continue to scale down, traditional spacer designs utilising high-<em>k</em> materials encounter challenges such as increased fringe capacitance and degraded control over leakage. This paper addresses these limitations by investigating a dual-<em>k</em> spacer strategy in Tree-FETs. The device architecture is meticulously optimised, exhibiting a nanosheet height and width of 5 nm and 23 nm, respectively, an inter-bridge height of 5 nm, an inter-bridge width of 8 nm and a channel length of 20 nm–12 nm. To optimise device performance, six dual-<em>k</em> spacer combinations have been meticulously chosen: HfO<sub>2</sub>+Air, HfO<sub>2</sub>+Si<sub>3</sub>N<sub>4</sub>, HfO<sub>2</sub>+SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>+Air, Al<sub>2</sub>O<sub>3</sub>+ Si<sub>3</sub>N<sub>4</sub>, and Al<sub>2</sub>O<sub>3</sub>+ SiO<sub>2</sub>. The findings unequivocally indicate that the HfO<sub>2</sub>+Air dual-<em>k</em> spacer consistently provides superior electrostatic control and markedly boosted DC and analog/RF performance. At a channel length of 20 nm, the HfO<sub>2</sub>+Air configuration attains a remarkably low drain-induced barrier lowering (DIBL) of 24.13 mV/V and an exceptionally steep subthreshold swing (SS) of 60.96 mV/dec, surpassing the single-<em>k</em> HfO<sub>2</sub> spacer, which demonstrates a DIBL of 29.02 mV/V and SS of 61.79 mV/dec. Moreover, the device with the HfO<sub>2</sub>+Air combination exhibits exceptional analog/RF performance, marked by elevated transconductance (gm), diminished output conductance (gds), and a lower cutoff frequency(<em>f</em><sub>T</sub>). This renders the device exceptionally suitable for high-performance and low-frequency applications. As the channel length increases, the advantages of the dual-<em>k</em> spacer become more apparent, leading to a notable improvement in switching performance and a substantial reduction in leakage current. Furthermore, the HfO<sub>2</sub>+Air arrangement routinely attains an <em>I</em><sub>ON</sub>/<em>I</em><sub>OFF</sub> 10<sup>8</sup>, markedly surpassing the <em>I</em><sub>ON</sub>/<em>I</em><sub>OFF</sub> ratio achieved by single-<em>k</em> design. This article highlights the viability of dual-<em>k</em> spacers for the future of semiconductor devices, providing an optimal balance between mitigating short-channel effects and optimising overall device efficiency.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"206 \",\"pages\":\"Article 208237\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文首次详细比较了三通道Tree-FET设计中单间隔层和双间隔层的介电性能。系统地评估了从20纳米到12纳米的不同通道长度。随着器件尺寸的不断缩小,利用高k材料的传统隔离设计遇到了诸如条纹电容增加和泄漏控制下降等挑战。本文通过研究tree - fet中的双k间隔器策略来解决这些限制。器件结构经过精心优化,纳米片高度和宽度分别为5 nm和23 nm,桥间高度为5 nm,桥间宽度为8 nm,通道长度为20 nm - 12 nm。为了优化器件性能,精心选择了六种双k间隔剂组合:HfO2+Air, HfO2+Si3N4, HfO2+SiO2, Al2O3+Air, Al2O3+ Si3N4和Al2O3+ SiO2。研究结果明确表明,HfO2+Air双k隔离剂始终提供卓越的静电控制,并显着提高DC和模拟/RF性能。在通道长度为20 nm时,HfO2+Air结构获得了24.13 mV/V的极低漏极诱导势垒降低(DIBL)和60.96 mV/dec的异常陡的亚阈值摆幅(SS),超过了单k HfO2间隔材料的DIBL和SS分别为29.02 mV/V和61.79 mV/dec。此外,具有HfO2+Air组合的器件表现出卓越的模拟/RF性能,其标志是跨导(gm)升高,输出电导(gds)降低,截止频率(fT)降低。这使得该器件非常适合高性能和低频应用。随着通道长度的增加,双k间隔器的优势变得更加明显,导致开关性能的显着改善和泄漏电流的大幅降低。此外,HfO2+Air排列通常达到离子/IOFF 108,明显超过单k设计所达到的离子/IOFF比。本文强调了双k间隔器在未来半导体器件中的可行性,在减轻短通道效应和优化整体器件效率之间提供了最佳平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-K spacer integration in Tree-FETs: A comparative study on leakage reduction and performance enhancement
In this article, the single and dual spacer dielectric performance in a three-channel Tree-FET design is compared in detail for the first time. Different channel lengths extending from 20 nm to 12 nm are systematically evaluated. As device dimensions continue to scale down, traditional spacer designs utilising high-k materials encounter challenges such as increased fringe capacitance and degraded control over leakage. This paper addresses these limitations by investigating a dual-k spacer strategy in Tree-FETs. The device architecture is meticulously optimised, exhibiting a nanosheet height and width of 5 nm and 23 nm, respectively, an inter-bridge height of 5 nm, an inter-bridge width of 8 nm and a channel length of 20 nm–12 nm. To optimise device performance, six dual-k spacer combinations have been meticulously chosen: HfO2+Air, HfO2+Si3N4, HfO2+SiO2, Al2O3+Air, Al2O3+ Si3N4, and Al2O3+ SiO2. The findings unequivocally indicate that the HfO2+Air dual-k spacer consistently provides superior electrostatic control and markedly boosted DC and analog/RF performance. At a channel length of 20 nm, the HfO2+Air configuration attains a remarkably low drain-induced barrier lowering (DIBL) of 24.13 mV/V and an exceptionally steep subthreshold swing (SS) of 60.96 mV/dec, surpassing the single-k HfO2 spacer, which demonstrates a DIBL of 29.02 mV/V and SS of 61.79 mV/dec. Moreover, the device with the HfO2+Air combination exhibits exceptional analog/RF performance, marked by elevated transconductance (gm), diminished output conductance (gds), and a lower cutoff frequency(fT). This renders the device exceptionally suitable for high-performance and low-frequency applications. As the channel length increases, the advantages of the dual-k spacer become more apparent, leading to a notable improvement in switching performance and a substantial reduction in leakage current. Furthermore, the HfO2+Air arrangement routinely attains an ION/IOFF 108, markedly surpassing the ION/IOFF ratio achieved by single-k design. This article highlights the viability of dual-k spacers for the future of semiconductor devices, providing an optimal balance between mitigating short-channel effects and optimising overall device efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信