利用当地资源和黄麻纤维开发可持续和成本优化的胶凝复合材料

Md.Atiqur Rahman, Md.Imran Kabir
{"title":"利用当地资源和黄麻纤维开发可持续和成本优化的胶凝复合材料","authors":"Md.Atiqur Rahman,&nbsp;Md.Imran Kabir","doi":"10.1016/j.clema.2025.100322","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to develop a cost-optimized Jute Fibre-Reinforced Cementitious Composites (JFRCCs) utilizing regionally sourced materials, including ordinary Portland cement, fine sand, jute fibre, superplasticizer, and by-products such as fly ash. A Full Factorial Design (2<sup>4</sup>) was employed to investigate four critical mixing parameters: water-to-binder proportion (W/B: 0.26–0.29), fly ash-to-cement proportion (FA/C: 1.2–2.0), sand-to-binder proportion (S/B: 0.3–0.5), and jute fibre content (0.5–1.0 % by volume), with parameter bounds established through preliminary experimental analysis. Thus, sixteen unique mixtures were formulated following a 2<sup>4</sup> factorial framework, and key mechanical performance metrics–28-day compressive strength (<em>f’<sub>c</sub></em>), strain at peak compressive stress, ultrasonic pulse velocity (UPV), splitting tensile strength (<em>f<sub>st</sub></em>), and material cost—were evaluated. The optimized JFRCCs complied with the minimum structural requirements for residential concrete specified in ACI 318–19. However, carbon footprint quantification across material production, transportation, and mixing phases revealed CO<sub>2</sub> emissions ranging from 458 to 668 kg/m<sup>3</sup>, underscoring the necessity for emission reduction strategies in sustainable mix design. Statistical analysis via response surface methodology yielded adjusted coefficients of determination (<em>R<sup>2</sup><sub>adj</sub></em>) of 88.92 %, 75.53 %, 96.47 %, 94.82 %, and 100.00 % for compressive strength, strain, UPV, splitting tensile strength, and cost models, respectively, validated through ANOVA (<em>p</em> &lt; 0.05) except for strain variability. Parametric sensitivity analysis elucidated the influence of individual factors on mechanical performances and cost-efficiency, while multi-objective desirability optimization identified an optimal mix ratio (W/B = 0.26, FA/C = 1.68, S/B = 0.50, jute content = 0.63 %) with a desirability value of 0.9614. This formulation achieved a balance between target mechanical properties (35 MPa compressive strength, 4 MPa splitting tensile strength) and cost-effectiveness, while maximizing strain capacity and UPV.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"17 ","pages":"Article 100322"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a sustainable and cost-optimized cementitious composites incorporating local resources and jute fibre\",\"authors\":\"Md.Atiqur Rahman,&nbsp;Md.Imran Kabir\",\"doi\":\"10.1016/j.clema.2025.100322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to develop a cost-optimized Jute Fibre-Reinforced Cementitious Composites (JFRCCs) utilizing regionally sourced materials, including ordinary Portland cement, fine sand, jute fibre, superplasticizer, and by-products such as fly ash. A Full Factorial Design (2<sup>4</sup>) was employed to investigate four critical mixing parameters: water-to-binder proportion (W/B: 0.26–0.29), fly ash-to-cement proportion (FA/C: 1.2–2.0), sand-to-binder proportion (S/B: 0.3–0.5), and jute fibre content (0.5–1.0 % by volume), with parameter bounds established through preliminary experimental analysis. Thus, sixteen unique mixtures were formulated following a 2<sup>4</sup> factorial framework, and key mechanical performance metrics–28-day compressive strength (<em>f’<sub>c</sub></em>), strain at peak compressive stress, ultrasonic pulse velocity (UPV), splitting tensile strength (<em>f<sub>st</sub></em>), and material cost—were evaluated. The optimized JFRCCs complied with the minimum structural requirements for residential concrete specified in ACI 318–19. However, carbon footprint quantification across material production, transportation, and mixing phases revealed CO<sub>2</sub> emissions ranging from 458 to 668 kg/m<sup>3</sup>, underscoring the necessity for emission reduction strategies in sustainable mix design. Statistical analysis via response surface methodology yielded adjusted coefficients of determination (<em>R<sup>2</sup><sub>adj</sub></em>) of 88.92 %, 75.53 %, 96.47 %, 94.82 %, and 100.00 % for compressive strength, strain, UPV, splitting tensile strength, and cost models, respectively, validated through ANOVA (<em>p</em> &lt; 0.05) except for strain variability. Parametric sensitivity analysis elucidated the influence of individual factors on mechanical performances and cost-efficiency, while multi-objective desirability optimization identified an optimal mix ratio (W/B = 0.26, FA/C = 1.68, S/B = 0.50, jute content = 0.63 %) with a desirability value of 0.9614. This formulation achieved a balance between target mechanical properties (35 MPa compressive strength, 4 MPa splitting tensile strength) and cost-effectiveness, while maximizing strain capacity and UPV.</div></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"17 \",\"pages\":\"Article 100322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397625000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397625000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种成本优化的黄麻纤维增强胶凝复合材料(JFRCCs),该材料利用当地采购的材料,包括普通硅酸盐水泥、细砂、黄麻纤维、高效减水剂和副产品,如粉煤灰。采用全因子设计(24)对水胶比(W/B: 0.26-0.29)、粉煤灰与水泥比(FA/C: 1.2-2.0)、砂胶比(S/B: 0.3-0.5)和黄麻纤维含量(体积比0.5 - 1.0%)4个关键混合参数进行了研究,并通过初步实验分析建立了参数界。因此,按照24因子框架配制了16种独特的混合物,并评估了关键的机械性能指标——28天抗压强度(f 'c)、峰值压应力应变、超声脉冲速度(UPV)、劈裂抗拉强度(fst)和材料成本。优化后的jfrcc符合ACI 318-19规定的住宅混凝土的最低结构要求。然而,材料生产、运输和混合阶段的碳足迹量化显示,二氧化碳排放量在458至668 kg/m3之间,强调了可持续混合设计中减排策略的必要性。通过响应面法进行统计分析,抗压强度、应变、UPV、劈裂抗拉强度和成本模型的调整决定系数(R2adj)分别为88.92%、75.53%、96.47%、94.82%和100.00%,并通过方差分析(p <;0.05),应变变异性除外。参数敏感性分析揭示了各因素对机械性能和成本效益的影响,多目标优选优选出最佳配合比(W/B = 0.26, FA/C = 1.68, S/B = 0.50,黄麻含量= 0.63%),优选值为0.9614。该配方在目标力学性能(35 MPa抗压强度,4 MPa劈裂抗拉强度)和成本效益之间取得了平衡,同时最大限度地提高了应变能力和UPV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a sustainable and cost-optimized cementitious composites incorporating local resources and jute fibre
This study aimed to develop a cost-optimized Jute Fibre-Reinforced Cementitious Composites (JFRCCs) utilizing regionally sourced materials, including ordinary Portland cement, fine sand, jute fibre, superplasticizer, and by-products such as fly ash. A Full Factorial Design (24) was employed to investigate four critical mixing parameters: water-to-binder proportion (W/B: 0.26–0.29), fly ash-to-cement proportion (FA/C: 1.2–2.0), sand-to-binder proportion (S/B: 0.3–0.5), and jute fibre content (0.5–1.0 % by volume), with parameter bounds established through preliminary experimental analysis. Thus, sixteen unique mixtures were formulated following a 24 factorial framework, and key mechanical performance metrics–28-day compressive strength (f’c), strain at peak compressive stress, ultrasonic pulse velocity (UPV), splitting tensile strength (fst), and material cost—were evaluated. The optimized JFRCCs complied with the minimum structural requirements for residential concrete specified in ACI 318–19. However, carbon footprint quantification across material production, transportation, and mixing phases revealed CO2 emissions ranging from 458 to 668 kg/m3, underscoring the necessity for emission reduction strategies in sustainable mix design. Statistical analysis via response surface methodology yielded adjusted coefficients of determination (R2adj) of 88.92 %, 75.53 %, 96.47 %, 94.82 %, and 100.00 % for compressive strength, strain, UPV, splitting tensile strength, and cost models, respectively, validated through ANOVA (p < 0.05) except for strain variability. Parametric sensitivity analysis elucidated the influence of individual factors on mechanical performances and cost-efficiency, while multi-objective desirability optimization identified an optimal mix ratio (W/B = 0.26, FA/C = 1.68, S/B = 0.50, jute content = 0.63 %) with a desirability value of 0.9614. This formulation achieved a balance between target mechanical properties (35 MPa compressive strength, 4 MPa splitting tensile strength) and cost-effectiveness, while maximizing strain capacity and UPV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信