{"title":"影响化学工程专业物理化学专业学生学习成绩的因素","authors":"Edgar Clyde R. Lopez","doi":"10.1016/j.ece.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>Academic success in Physical Chemistry is influenced by personal, institutional, and social factors. Key predictors include prior academic performance, study habits, motivation, and time management. A strong foundation in prerequisite knowledge, effective learning strategies, and self-efficacy are crucial for overcoming challenges. Institutional factors, particularly instructional quality, academic policies, and resource accessibility, significantly impact outcomes, with structured pedagogy proving more influential than interactive learning environments. Peer interactions, including group cohesion and instructor engagement, emerged as the strongest social predictors of success. Students with clear grade expectations and strong self-efficacy exhibited higher persistence and achievement, while stress, physical health, and administrative support played indirect roles in overall well-being. Regression analysis confirmed the predictive strength of these factors. Student feedback highlighted the need for additional practice problems, tutoring, and online resources, while faculty emphasized challenges in conceptual understanding, mathematical skills, and workload management. Addressing these concerns through evidence-based teaching, flexible assessments, and targeted interventions can enhance student performance. Universities should integrate personalized learning, motivation-driven strategies, and institutional support to foster resilience and long-term academic success.</div></div><div><h3>Tweetable Abstract</h3><div>Academic success in Physical Chemistry is shaped by prior achievement, study habits, motivation, and peer interactions. Structured pedagogy, self-efficacy, and institutional support drive performance.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"52 ","pages":"Pages 119-132"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors influencing the academic performance of chemical engineering students in physical chemistry\",\"authors\":\"Edgar Clyde R. Lopez\",\"doi\":\"10.1016/j.ece.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Academic success in Physical Chemistry is influenced by personal, institutional, and social factors. Key predictors include prior academic performance, study habits, motivation, and time management. A strong foundation in prerequisite knowledge, effective learning strategies, and self-efficacy are crucial for overcoming challenges. Institutional factors, particularly instructional quality, academic policies, and resource accessibility, significantly impact outcomes, with structured pedagogy proving more influential than interactive learning environments. Peer interactions, including group cohesion and instructor engagement, emerged as the strongest social predictors of success. Students with clear grade expectations and strong self-efficacy exhibited higher persistence and achievement, while stress, physical health, and administrative support played indirect roles in overall well-being. Regression analysis confirmed the predictive strength of these factors. Student feedback highlighted the need for additional practice problems, tutoring, and online resources, while faculty emphasized challenges in conceptual understanding, mathematical skills, and workload management. Addressing these concerns through evidence-based teaching, flexible assessments, and targeted interventions can enhance student performance. Universities should integrate personalized learning, motivation-driven strategies, and institutional support to foster resilience and long-term academic success.</div></div><div><h3>Tweetable Abstract</h3><div>Academic success in Physical Chemistry is shaped by prior achievement, study habits, motivation, and peer interactions. Structured pedagogy, self-efficacy, and institutional support drive performance.</div></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"52 \",\"pages\":\"Pages 119-132\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772825000247\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000247","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Factors influencing the academic performance of chemical engineering students in physical chemistry
Academic success in Physical Chemistry is influenced by personal, institutional, and social factors. Key predictors include prior academic performance, study habits, motivation, and time management. A strong foundation in prerequisite knowledge, effective learning strategies, and self-efficacy are crucial for overcoming challenges. Institutional factors, particularly instructional quality, academic policies, and resource accessibility, significantly impact outcomes, with structured pedagogy proving more influential than interactive learning environments. Peer interactions, including group cohesion and instructor engagement, emerged as the strongest social predictors of success. Students with clear grade expectations and strong self-efficacy exhibited higher persistence and achievement, while stress, physical health, and administrative support played indirect roles in overall well-being. Regression analysis confirmed the predictive strength of these factors. Student feedback highlighted the need for additional practice problems, tutoring, and online resources, while faculty emphasized challenges in conceptual understanding, mathematical skills, and workload management. Addressing these concerns through evidence-based teaching, flexible assessments, and targeted interventions can enhance student performance. Universities should integrate personalized learning, motivation-driven strategies, and institutional support to foster resilience and long-term academic success.
Tweetable Abstract
Academic success in Physical Chemistry is shaped by prior achievement, study habits, motivation, and peer interactions. Structured pedagogy, self-efficacy, and institutional support drive performance.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning