Lu Li, Shaoxiong Liu, Kaifeng Wang, Bo Wu, Shiming Zhang
{"title":"有机薄膜晶体管用聚合物栅极介质的研究进展","authors":"Lu Li, Shaoxiong Liu, Kaifeng Wang, Bo Wu, Shiming Zhang","doi":"10.1002/macp.202400540","DOIUrl":null,"url":null,"abstract":"<p>Organic thin-film transistors (OTFTs) are integral to develop future large-area functional devices. The performance of OTFTs is remarkably related to the gate dielectric material, which affects key parameters, such as on/off ratio, low hysteresis, and device stability. This paper presents a review of novel polymer gate dielectric materials for OTFTs. It begins with an outline of the history of OTFTs, their principles of operation, basic structures, and processing demands associated with the development of cost-effective organic electronic devices. Two classes of OTFT dielectrics developed in the last decades are reviewed: polymer dielectric materials; polymeric–inorganic hybrid dielectric materials. The recent literature pertaining to gate dielectric materials with excellent dielectric properties, which also provide tunable and reduced OTFT operating voltages are summarized.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Polymer Gate Dielectrics for Organic Thin-Film Transistors\",\"authors\":\"Lu Li, Shaoxiong Liu, Kaifeng Wang, Bo Wu, Shiming Zhang\",\"doi\":\"10.1002/macp.202400540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic thin-film transistors (OTFTs) are integral to develop future large-area functional devices. The performance of OTFTs is remarkably related to the gate dielectric material, which affects key parameters, such as on/off ratio, low hysteresis, and device stability. This paper presents a review of novel polymer gate dielectric materials for OTFTs. It begins with an outline of the history of OTFTs, their principles of operation, basic structures, and processing demands associated with the development of cost-effective organic electronic devices. Two classes of OTFT dielectrics developed in the last decades are reviewed: polymer dielectric materials; polymeric–inorganic hybrid dielectric materials. The recent literature pertaining to gate dielectric materials with excellent dielectric properties, which also provide tunable and reduced OTFT operating voltages are summarized.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400540\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400540","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recent Advances in Polymer Gate Dielectrics for Organic Thin-Film Transistors
Organic thin-film transistors (OTFTs) are integral to develop future large-area functional devices. The performance of OTFTs is remarkably related to the gate dielectric material, which affects key parameters, such as on/off ratio, low hysteresis, and device stability. This paper presents a review of novel polymer gate dielectric materials for OTFTs. It begins with an outline of the history of OTFTs, their principles of operation, basic structures, and processing demands associated with the development of cost-effective organic electronic devices. Two classes of OTFT dielectrics developed in the last decades are reviewed: polymer dielectric materials; polymeric–inorganic hybrid dielectric materials. The recent literature pertaining to gate dielectric materials with excellent dielectric properties, which also provide tunable and reduced OTFT operating voltages are summarized.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.