一种可验证、高效且具有隐私保护的加密数据多关键字模糊排序搜索方案

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Fengyi Gao, Na Wang, Jianwei Liu, Zhiquan Liu, Junsong Fu, Lunzhi Deng
{"title":"一种可验证、高效且具有隐私保护的加密数据多关键字模糊排序搜索方案","authors":"Fengyi Gao,&nbsp;Na Wang,&nbsp;Jianwei Liu,&nbsp;Zhiquan Liu,&nbsp;Junsong Fu,&nbsp;Lunzhi Deng","doi":"10.1002/cpe.70149","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Searchable Encryption (SE) enables searching over encrypted data. Exact keyword search is supported in most SE schemes, which achieve higher search accuracy but suffer from lower completeness due to the inability to handle similar expressions. To realize fuzzy keyword search, some schemes employ Bloom Filters (BFs), but these may incur high false positive rates and risk exposing the Bloom Filter's internal values to cloud servers (CS). Besides, most existing schemes ignore the fact that CS may engage in malicious behaviors (e.g., undercounting parameters or forging results). To address these issues, we propose an efficient and verifiable ranked fuzzy multi-keyword search scheme based on BFs. We propose a Twin Bloom Filter (TBF) to conceal insertion positions and introduce random numbers to obfuscate uninserted bits. Search results are ranked using Term Frequency-Inverse Document Frequency (TF-IDF) scores to improve relevance. To ensure correctness and integrity, we employ Real Homomorphic Message Authentication Codes (RealHomMAC) and a random challenge technique, respectively. Security analysis proves that our scheme remains secure under both the known-ciphertext model and the known-background model. Theoretical and experimental performance analysis confirms that our scheme achieves efficient and accurate keyword search.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 15-17","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Verifiable and Efficient Multi-Keyword Fuzzy Rank Search Scheme Over Encrypted Data With Privacy-Preserving\",\"authors\":\"Fengyi Gao,&nbsp;Na Wang,&nbsp;Jianwei Liu,&nbsp;Zhiquan Liu,&nbsp;Junsong Fu,&nbsp;Lunzhi Deng\",\"doi\":\"10.1002/cpe.70149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Searchable Encryption (SE) enables searching over encrypted data. Exact keyword search is supported in most SE schemes, which achieve higher search accuracy but suffer from lower completeness due to the inability to handle similar expressions. To realize fuzzy keyword search, some schemes employ Bloom Filters (BFs), but these may incur high false positive rates and risk exposing the Bloom Filter's internal values to cloud servers (CS). Besides, most existing schemes ignore the fact that CS may engage in malicious behaviors (e.g., undercounting parameters or forging results). To address these issues, we propose an efficient and verifiable ranked fuzzy multi-keyword search scheme based on BFs. We propose a Twin Bloom Filter (TBF) to conceal insertion positions and introduce random numbers to obfuscate uninserted bits. Search results are ranked using Term Frequency-Inverse Document Frequency (TF-IDF) scores to improve relevance. To ensure correctness and integrity, we employ Real Homomorphic Message Authentication Codes (RealHomMAC) and a random challenge technique, respectively. Security analysis proves that our scheme remains secure under both the known-ciphertext model and the known-background model. Theoretical and experimental performance analysis confirms that our scheme achieves efficient and accurate keyword search.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 15-17\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70149\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70149","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

可搜索加密(Searchable Encryption, SE)支持对加密数据进行搜索。大多数SE方案都支持精确关键字搜索,虽然搜索精度较高,但由于无法处理相似表达式,因此完整性较低。为了实现模糊关键字搜索,一些方案采用了Bloom Filters (BFs),但这些方案可能会产生很高的误报率,并且有将Bloom Filter的内部值暴露给云服务器(CS)的风险。此外,大多数现有方案都忽略了CS可能参与恶意行为(如少计参数或伪造结果)的事实。为了解决这些问题,我们提出了一种高效且可验证的基于bf的模糊多关键字排序搜索方案。我们提出了一个双布隆滤波器(TBF)来隐藏插入位置,并引入随机数来混淆未插入的位。使用术语频率-逆文档频率(TF-IDF)分数对搜索结果进行排名,以提高相关性。为了确保正确性和完整性,我们分别采用了真实同态消息认证码(RealHomMAC)和随机挑战技术。安全性分析证明,该方案在已知密文模型和已知背景模型下都是安全的。理论和实验性能分析证实了我们的方案实现了高效、准确的关键词搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Verifiable and Efficient Multi-Keyword Fuzzy Rank Search Scheme Over Encrypted Data With Privacy-Preserving

Searchable Encryption (SE) enables searching over encrypted data. Exact keyword search is supported in most SE schemes, which achieve higher search accuracy but suffer from lower completeness due to the inability to handle similar expressions. To realize fuzzy keyword search, some schemes employ Bloom Filters (BFs), but these may incur high false positive rates and risk exposing the Bloom Filter's internal values to cloud servers (CS). Besides, most existing schemes ignore the fact that CS may engage in malicious behaviors (e.g., undercounting parameters or forging results). To address these issues, we propose an efficient and verifiable ranked fuzzy multi-keyword search scheme based on BFs. We propose a Twin Bloom Filter (TBF) to conceal insertion positions and introduce random numbers to obfuscate uninserted bits. Search results are ranked using Term Frequency-Inverse Document Frequency (TF-IDF) scores to improve relevance. To ensure correctness and integrity, we employ Real Homomorphic Message Authentication Codes (RealHomMAC) and a random challenge technique, respectively. Security analysis proves that our scheme remains secure under both the known-ciphertext model and the known-background model. Theoretical and experimental performance analysis confirms that our scheme achieves efficient and accurate keyword search.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信