用于高效光催化析氢的氯化钠辅助结晶石墨氮化碳

Electron Pub Date : 2025-03-15 DOI:10.1002/elt2.70000
Xueze Chu, C. I. Sathish, Jae-Hun Yang, Wei Li, Dongchen Qi, Xinwei Guan, Xiaojiang Yu, Mark B. H. Breese, Liang Qiao, Jiabao Yi
{"title":"用于高效光催化析氢的氯化钠辅助结晶石墨氮化碳","authors":"Xueze Chu,&nbsp;C. I. Sathish,&nbsp;Jae-Hun Yang,&nbsp;Wei Li,&nbsp;Dongchen Qi,&nbsp;Xinwei Guan,&nbsp;Xiaojiang Yu,&nbsp;Mark B. H. Breese,&nbsp;Liang Qiao,&nbsp;Jiabao Yi","doi":"10.1002/elt2.70000","DOIUrl":null,"url":null,"abstract":"<p>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has attracted enormous attention as a photocatalyst due to its appropriate bandgap, high chemical stability, and visible light response. However, it is still challenging to synthesize highly crystalline g-C<sub>3</sub>N<sub>4</sub>, favoring the separation of photogenerated electron–hole pairs and promoting improved photocatalytic activity. Herein, we report a novel approach to achieve highly crystalline g-C<sub>3</sub>N<sub>4</sub> by simply pressing sodium chloride and carbon nitride into a pellet followed by heat treatment, which is different from conventional molten salt methods. The resulting g-C<sub>3</sub>N<sub>4</sub> has an optimum band structure that benefits enhanced light absorption and charge separation efficiency. The intimate contact between sodium chloride and carbon nitride in the pressed pellet facilitates the diffusion of sodium ions and increases the material's resistance to high annealing temperatures, leading to improved crystallinity. The photocurrent response of this highly crystalline material under visible light irradiation is approximately four times higher than that of its bulk counterpart, resulting in a hydrogen production rate of up to 650 μmol g<sup>−1</sup> h<sup>−1</sup> (10% TEOA). This work paves a new path in designing novel carbon nitrides with enhanced photoelectrochemical and photocatalytic performance.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70000","citationCount":"0","resultStr":"{\"title\":\"Sodium Chloride-Assisted Crystalline Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution\",\"authors\":\"Xueze Chu,&nbsp;C. I. Sathish,&nbsp;Jae-Hun Yang,&nbsp;Wei Li,&nbsp;Dongchen Qi,&nbsp;Xinwei Guan,&nbsp;Xiaojiang Yu,&nbsp;Mark B. H. Breese,&nbsp;Liang Qiao,&nbsp;Jiabao Yi\",\"doi\":\"10.1002/elt2.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has attracted enormous attention as a photocatalyst due to its appropriate bandgap, high chemical stability, and visible light response. However, it is still challenging to synthesize highly crystalline g-C<sub>3</sub>N<sub>4</sub>, favoring the separation of photogenerated electron–hole pairs and promoting improved photocatalytic activity. Herein, we report a novel approach to achieve highly crystalline g-C<sub>3</sub>N<sub>4</sub> by simply pressing sodium chloride and carbon nitride into a pellet followed by heat treatment, which is different from conventional molten salt methods. The resulting g-C<sub>3</sub>N<sub>4</sub> has an optimum band structure that benefits enhanced light absorption and charge separation efficiency. The intimate contact between sodium chloride and carbon nitride in the pressed pellet facilitates the diffusion of sodium ions and increases the material's resistance to high annealing temperatures, leading to improved crystallinity. The photocurrent response of this highly crystalline material under visible light irradiation is approximately four times higher than that of its bulk counterpart, resulting in a hydrogen production rate of up to 650 μmol g<sup>−1</sup> h<sup>−1</sup> (10% TEOA). This work paves a new path in designing novel carbon nitrides with enhanced photoelectrochemical and photocatalytic performance.</p>\",\"PeriodicalId\":100403,\"journal\":{\"name\":\"Electron\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

石墨化氮化碳(g-C3N4)作为一种光催化剂因其合适的带隙、高的化学稳定性和可见光响应而受到广泛关注。然而,合成高结晶性的g-C3N4仍然具有挑战性,有利于光生电子-空穴对的分离,促进光催化活性的提高。在此,我们报告了一种与传统熔盐方法不同的新方法,即简单地将氯化钠和氮化碳压入球团中,然后进行热处理,从而获得高结晶的g-C3N4。所得的g-C3N4具有最佳能带结构,有利于增强光吸收和电荷分离效率。在压制的球团中,氯化钠和氮化碳之间的密切接触促进了钠离子的扩散,增加了材料对高温退火的抵抗力,从而提高了结晶度。这种高度结晶的材料在可见光照射下的光电流响应大约是其块状材料的四倍,导致氢的产率高达650 μmol g−1 h−1 (10% TEOA)。本研究为设计具有较强光电化学和光催化性能的新型氮化碳材料开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sodium Chloride-Assisted Crystalline Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution

Graphitic carbon nitride (g-C3N4) has attracted enormous attention as a photocatalyst due to its appropriate bandgap, high chemical stability, and visible light response. However, it is still challenging to synthesize highly crystalline g-C3N4, favoring the separation of photogenerated electron–hole pairs and promoting improved photocatalytic activity. Herein, we report a novel approach to achieve highly crystalline g-C3N4 by simply pressing sodium chloride and carbon nitride into a pellet followed by heat treatment, which is different from conventional molten salt methods. The resulting g-C3N4 has an optimum band structure that benefits enhanced light absorption and charge separation efficiency. The intimate contact between sodium chloride and carbon nitride in the pressed pellet facilitates the diffusion of sodium ions and increases the material's resistance to high annealing temperatures, leading to improved crystallinity. The photocurrent response of this highly crystalline material under visible light irradiation is approximately four times higher than that of its bulk counterpart, resulting in a hydrogen production rate of up to 650 μmol g−1 h−1 (10% TEOA). This work paves a new path in designing novel carbon nitrides with enhanced photoelectrochemical and photocatalytic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信