Chen Qi, Wang Chenglong, Li Binhao, Lin Yuan, Zhou Zibo, Jin Wenzhong
{"title":"基于神经网络的超燃冲压发动机壁面热力特性研究综述","authors":"Chen Qi, Wang Chenglong, Li Binhao, Lin Yuan, Zhou Zibo, Jin Wenzhong","doi":"10.1155/er/3241787","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the development of high-performance computing and advanced experimental methods, data-driven machine learning, especially neural network technology, has shown great potential in fluid mechanics research and has become a fourth paradigm research tool. In particular, remarkable achievements have been made in turbulence modeling, near-wall flow prediction, and combustion dynamic evolution. Researchers use neural network model to assist turbulence control, improve Reynolds average turbulence model, and harnesses the deep learning method to solve the problem of complex flow phenomenon prediction driven by large-scale data, which effectively improves the accuracy and efficiency of internal flow and wall effect simulation of supersonic combustion ramjet (scramjet) engine. These studies not only promote the development of fluid mechanics but also provide strong support for the design optimization of scramjet engines.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/3241787","citationCount":"0","resultStr":"{\"title\":\"A Review of Research on the Thermo-Force Characteristics of Scramjet Engine Wall Based on Neural Networks\",\"authors\":\"Chen Qi, Wang Chenglong, Li Binhao, Lin Yuan, Zhou Zibo, Jin Wenzhong\",\"doi\":\"10.1155/er/3241787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>With the development of high-performance computing and advanced experimental methods, data-driven machine learning, especially neural network technology, has shown great potential in fluid mechanics research and has become a fourth paradigm research tool. In particular, remarkable achievements have been made in turbulence modeling, near-wall flow prediction, and combustion dynamic evolution. Researchers use neural network model to assist turbulence control, improve Reynolds average turbulence model, and harnesses the deep learning method to solve the problem of complex flow phenomenon prediction driven by large-scale data, which effectively improves the accuracy and efficiency of internal flow and wall effect simulation of supersonic combustion ramjet (scramjet) engine. These studies not only promote the development of fluid mechanics but also provide strong support for the design optimization of scramjet engines.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/3241787\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/3241787\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/3241787","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A Review of Research on the Thermo-Force Characteristics of Scramjet Engine Wall Based on Neural Networks
With the development of high-performance computing and advanced experimental methods, data-driven machine learning, especially neural network technology, has shown great potential in fluid mechanics research and has become a fourth paradigm research tool. In particular, remarkable achievements have been made in turbulence modeling, near-wall flow prediction, and combustion dynamic evolution. Researchers use neural network model to assist turbulence control, improve Reynolds average turbulence model, and harnesses the deep learning method to solve the problem of complex flow phenomenon prediction driven by large-scale data, which effectively improves the accuracy and efficiency of internal flow and wall effect simulation of supersonic combustion ramjet (scramjet) engine. These studies not only promote the development of fluid mechanics but also provide strong support for the design optimization of scramjet engines.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system