烷基链尾对侧链液晶聚合物导热性能和物理性能的影响

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Yeji Han, Thu Loan Dang, Soyeong Choe, Kyosun Ku, Hyeonuk Yeo
{"title":"烷基链尾对侧链液晶聚合物导热性能和物理性能的影响","authors":"Yeji Han,&nbsp;Thu Loan Dang,&nbsp;Soyeong Choe,&nbsp;Kyosun Ku,&nbsp;Hyeonuk Yeo","doi":"10.1002/macp.202400522","DOIUrl":null,"url":null,"abstract":"<p>Thermally conductive polymers have gained scientific attention for improving heat dissipation in electric devices. Their thermal conductivity is enhanced by optimizing the network molecular alignment. Liquid crystal, through intermolecular interaction, achieves high orientation levels, thereby enabling superior thermal conductivity. This study aims to demonstrate the thermal conductivity of polymers derived from liquid crystal materials by synthesizing a series of liquid crystal monomers, EP<sub>n</sub>, based on a phenyl benzoate mesogen core. The EP<sub>n</sub> monomers are designed with epoxide functional groups with various alkyl chain tails (<i>n</i> = 3, 4, 5, 8). Side-chain polyethylene glycols (P-EP<sub>n</sub> series) are synthesized through anionic ring-opening polymerization using potassium <i>tert</i>-butoxide. The effect of the introduced aliphatic chain tail on structural orientation and physical properties is investigated, revealing significant effects on phase transition behavior and thermal conductivity. In addition, P-EP<sub>n</sub> exhibits higher thermal decomposition temperature (&gt; 360 °C) compared to conventional polyethylene glycol, with P-EP<sub>5</sub> achieving the highest thermal conductivity of 0.42 W m<sup>−1</sup> K<sup>−1</sup> in the P-EP<sub>n</sub> series.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400522","citationCount":"0","resultStr":"{\"title\":\"Effect of Alkyl Chain Tail on Thermal Conductivity and Physical Properties of Side-Chain Liquid Crystalline Polymers\",\"authors\":\"Yeji Han,&nbsp;Thu Loan Dang,&nbsp;Soyeong Choe,&nbsp;Kyosun Ku,&nbsp;Hyeonuk Yeo\",\"doi\":\"10.1002/macp.202400522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermally conductive polymers have gained scientific attention for improving heat dissipation in electric devices. Their thermal conductivity is enhanced by optimizing the network molecular alignment. Liquid crystal, through intermolecular interaction, achieves high orientation levels, thereby enabling superior thermal conductivity. This study aims to demonstrate the thermal conductivity of polymers derived from liquid crystal materials by synthesizing a series of liquid crystal monomers, EP<sub>n</sub>, based on a phenyl benzoate mesogen core. The EP<sub>n</sub> monomers are designed with epoxide functional groups with various alkyl chain tails (<i>n</i> = 3, 4, 5, 8). Side-chain polyethylene glycols (P-EP<sub>n</sub> series) are synthesized through anionic ring-opening polymerization using potassium <i>tert</i>-butoxide. The effect of the introduced aliphatic chain tail on structural orientation and physical properties is investigated, revealing significant effects on phase transition behavior and thermal conductivity. In addition, P-EP<sub>n</sub> exhibits higher thermal decomposition temperature (&gt; 360 °C) compared to conventional polyethylene glycol, with P-EP<sub>5</sub> achieving the highest thermal conductivity of 0.42 W m<sup>−1</sup> K<sup>−1</sup> in the P-EP<sub>n</sub> series.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400522\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400522\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400522","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

导热聚合物因改善电子器件的散热性能而受到科学关注。通过优化网络分子排列,提高了其导热性。液晶,通过分子间相互作用,达到高取向水平,从而实现优越的导热性。本研究旨在通过合成一系列液晶单体EPn来证明液晶材料衍生聚合物的导热性,EPn基于苯甲酸苯酯介质核心。EPn单体被设计成具有不同烷基链尾的环氧化物官能团(n = 3、4、5、8)。采用阴离子开环聚合法制备了侧链聚乙二醇(P-EPn系列)。研究了脂肪链尾部对结构取向和物理性能的影响,揭示了其对相变行为和导热性能的显著影响。此外,P-EPn表现出较高的热分解温度(>;在P-EPn系列中,P-EP5的导热系数最高,为0.42 W m−1 K−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Alkyl Chain Tail on Thermal Conductivity and Physical Properties of Side-Chain Liquid Crystalline Polymers

Thermally conductive polymers have gained scientific attention for improving heat dissipation in electric devices. Their thermal conductivity is enhanced by optimizing the network molecular alignment. Liquid crystal, through intermolecular interaction, achieves high orientation levels, thereby enabling superior thermal conductivity. This study aims to demonstrate the thermal conductivity of polymers derived from liquid crystal materials by synthesizing a series of liquid crystal monomers, EPn, based on a phenyl benzoate mesogen core. The EPn monomers are designed with epoxide functional groups with various alkyl chain tails (n = 3, 4, 5, 8). Side-chain polyethylene glycols (P-EPn series) are synthesized through anionic ring-opening polymerization using potassium tert-butoxide. The effect of the introduced aliphatic chain tail on structural orientation and physical properties is investigated, revealing significant effects on phase transition behavior and thermal conductivity. In addition, P-EPn exhibits higher thermal decomposition temperature (> 360 °C) compared to conventional polyethylene glycol, with P-EP5 achieving the highest thermal conductivity of 0.42 W m−1 K−1 in the P-EPn series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信