{"title":"非高斯传感器噪声存在下具有自船位置不确定性的被动目标运动分析","authors":"Rohit Kumar Singh, Shreya Das, Shovan Bhaumik","doi":"10.1049/rsn2.70043","DOIUrl":null,"url":null,"abstract":"<p>Passive target motion analysis (TMA) is traditionally performed using angle-only measurements, which requires the own-ship to execute a manoeuvre to make the tracking system observable. These manoeuvres are burdensome for the naval community. In contrast, this work explores underwater TMA by incorporating time delay and Doppler frequency measurements along with angle data, eliminating the need for own-ship manoeuvre and improving estimation accuracy. Measurement noises are assumed to follow a non-Gaussian distribution, and maximum correntropy (MC)-based Bayesian filtering framework is adopted to solve the problem. Furthermore, the own-ship's position is inherently uncertain due to navigation errors, and this work addresses the uncertainty by modifying the measurement noise covariance matrix within the estimation framework. Simulation results demonstrate that the proposed methodology achieves improved tracking performance in terms of root mean square error (RMSE) and <span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> track loss compared to existing state-of-the-art MC Kalman filtering approaches.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70043","citationCount":"0","resultStr":"{\"title\":\"Passive Target Motion Analysis With Own-Ship Location Uncertainty in the Presence of Non-Gaussian Sensor Noise\",\"authors\":\"Rohit Kumar Singh, Shreya Das, Shovan Bhaumik\",\"doi\":\"10.1049/rsn2.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Passive target motion analysis (TMA) is traditionally performed using angle-only measurements, which requires the own-ship to execute a manoeuvre to make the tracking system observable. These manoeuvres are burdensome for the naval community. In contrast, this work explores underwater TMA by incorporating time delay and Doppler frequency measurements along with angle data, eliminating the need for own-ship manoeuvre and improving estimation accuracy. Measurement noises are assumed to follow a non-Gaussian distribution, and maximum correntropy (MC)-based Bayesian filtering framework is adopted to solve the problem. Furthermore, the own-ship's position is inherently uncertain due to navigation errors, and this work addresses the uncertainty by modifying the measurement noise covariance matrix within the estimation framework. Simulation results demonstrate that the proposed methodology achieves improved tracking performance in terms of root mean square error (RMSE) and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>%</mi>\\n </mrow>\\n <annotation> $\\\\%$</annotation>\\n </semantics></math> track loss compared to existing state-of-the-art MC Kalman filtering approaches.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70043\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70043","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Passive Target Motion Analysis With Own-Ship Location Uncertainty in the Presence of Non-Gaussian Sensor Noise
Passive target motion analysis (TMA) is traditionally performed using angle-only measurements, which requires the own-ship to execute a manoeuvre to make the tracking system observable. These manoeuvres are burdensome for the naval community. In contrast, this work explores underwater TMA by incorporating time delay and Doppler frequency measurements along with angle data, eliminating the need for own-ship manoeuvre and improving estimation accuracy. Measurement noises are assumed to follow a non-Gaussian distribution, and maximum correntropy (MC)-based Bayesian filtering framework is adopted to solve the problem. Furthermore, the own-ship's position is inherently uncertain due to navigation errors, and this work addresses the uncertainty by modifying the measurement noise covariance matrix within the estimation framework. Simulation results demonstrate that the proposed methodology achieves improved tracking performance in terms of root mean square error (RMSE) and track loss compared to existing state-of-the-art MC Kalman filtering approaches.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.