{"title":"具有柔性的高效钙钛矿/硅串联太阳能电池","authors":"Hirotaka Shishido, Ryo Sato, Daisuke Ieki, Gakuto Matsuo, Kimihiko Saito, Makoto Konagai, Ryousuke Ishikawa","doi":"10.1002/solr.202400899","DOIUrl":null,"url":null,"abstract":"<p>Perovskite/silicon tandem solar cells are a novel class of solar cells that have recently attracted increasing attention due to their notable efficiency; however, they inherently suffer from loss of flexibility. Accordingly, in this study, we develop flexible perovskite/silicon tandem solar cells by fabricating perovskite solar cells atop bendable thin-crystalline silicon solar cells. By reducing the thickness of the silicon substrate to approximately 60 µm, applying microtexturing to its surface, and incorporating a low-refractive index-doped layer, we produce a flexible silicon heterojunction solar cell with an efficiency exceeding 21%. Subsequently, by optimizing the self-assembled monolayer processing conditions on the microtextured surface and constructing an inverted perovskite solar cell on the flexible SHJ, we achieve 26.5% efficiency for the flexible perovskite/silicon tandem solar cell. These findings could be valuable for the development of new, highly efficient, lightweight, and flexible solar cells, potentially accelerating their deployment in conditions where traditional silicon solar cells are impractical.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400899","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Perovskite/Silicon Tandem Solar Cells with Flexibility\",\"authors\":\"Hirotaka Shishido, Ryo Sato, Daisuke Ieki, Gakuto Matsuo, Kimihiko Saito, Makoto Konagai, Ryousuke Ishikawa\",\"doi\":\"10.1002/solr.202400899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite/silicon tandem solar cells are a novel class of solar cells that have recently attracted increasing attention due to their notable efficiency; however, they inherently suffer from loss of flexibility. Accordingly, in this study, we develop flexible perovskite/silicon tandem solar cells by fabricating perovskite solar cells atop bendable thin-crystalline silicon solar cells. By reducing the thickness of the silicon substrate to approximately 60 µm, applying microtexturing to its surface, and incorporating a low-refractive index-doped layer, we produce a flexible silicon heterojunction solar cell with an efficiency exceeding 21%. Subsequently, by optimizing the self-assembled monolayer processing conditions on the microtextured surface and constructing an inverted perovskite solar cell on the flexible SHJ, we achieve 26.5% efficiency for the flexible perovskite/silicon tandem solar cell. These findings could be valuable for the development of new, highly efficient, lightweight, and flexible solar cells, potentially accelerating their deployment in conditions where traditional silicon solar cells are impractical.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 11\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400899\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400899\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400899","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
High-Efficiency Perovskite/Silicon Tandem Solar Cells with Flexibility
Perovskite/silicon tandem solar cells are a novel class of solar cells that have recently attracted increasing attention due to their notable efficiency; however, they inherently suffer from loss of flexibility. Accordingly, in this study, we develop flexible perovskite/silicon tandem solar cells by fabricating perovskite solar cells atop bendable thin-crystalline silicon solar cells. By reducing the thickness of the silicon substrate to approximately 60 µm, applying microtexturing to its surface, and incorporating a low-refractive index-doped layer, we produce a flexible silicon heterojunction solar cell with an efficiency exceeding 21%. Subsequently, by optimizing the self-assembled monolayer processing conditions on the microtextured surface and constructing an inverted perovskite solar cell on the flexible SHJ, we achieve 26.5% efficiency for the flexible perovskite/silicon tandem solar cell. These findings could be valuable for the development of new, highly efficient, lightweight, and flexible solar cells, potentially accelerating their deployment in conditions where traditional silicon solar cells are impractical.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.