锂离子电池中掺杂纳米管的原位纳米片层组装的有效阳极材料†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-06-06 DOI:10.1039/D5RA02378E
Mengna Xie, Yongheng Zhou, Shuai Dong, Fei Li, Fenghua Zhang, Wei Wei and Jinhai Cui
{"title":"锂离子电池中掺杂纳米管的原位纳米片层组装的有效阳极材料†","authors":"Mengna Xie, Yongheng Zhou, Shuai Dong, Fei Li, Fenghua Zhang, Wei Wei and Jinhai Cui","doi":"10.1039/D5RA02378E","DOIUrl":null,"url":null,"abstract":"<p >Lower lithium-ion diffusion rates and significant volumetric expansion present serious challenges for using SnO<small><sub>2</sub></small>/SnO composites as promising anode materials in advanced lithium-ion batteries. To address this issue, we synthesized a novel Sn@C/CNT composite from a Sn-based organometallic complex with 2-methylimidazole and oxidized multi-wall carbon nanotubes. Structural analysis has confirmed that the tin-based composites consist of nano-lamellar assemblies modified by oxidized carbon nanotubes. In these composites, the tin active particles have an average size ranging from 2 to 3 nm, while the layered nano-lamellar structure has an average thickness of 6 nm. The resulting Sn@C/CNT anode material demonstrated a stable specific capacity of up to 688 mA h g<small><sup>−1</sup></small> even after 500 cycles at a higher charging–discharging current density of 1 A g<small><sup>−1</sup></small>. The significant diffusion-controlled lithium ion diffusion coefficient of approximately 10<small><sup>−12</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small> indicates vigorous dynamic activity from reversible Sn–Li alloy electrochemical reactions. Additionally, the substantial capacity-controlled lithium ion diffusion coefficient, which drops to 10<small><sup>−16</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small>, illustrates the predominance of the pseudo-capacitance arising from interface reaction. By coupling electrochemical impedance spectroscopy, galvanostatic intermittent titration technique, and linear sweep voltammetry, the mixed lithium-ion diffusion effect was proposed to explain the remarkable adaptability of these Sn-based anode materials for cycling performance across a wide range of specific currents. This work provides a new intention for resolving the drastic volumetric expansion and unsatisfactory dynamic activity of Sn-based anode materials.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 24","pages":" 19176-19191"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02378e?page=search","citationCount":"0","resultStr":"{\"title\":\"Effective anode materials for in situ Sn@C nano-lamellar assembly with doped nanotubes in lithium-ion batteries†\",\"authors\":\"Mengna Xie, Yongheng Zhou, Shuai Dong, Fei Li, Fenghua Zhang, Wei Wei and Jinhai Cui\",\"doi\":\"10.1039/D5RA02378E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lower lithium-ion diffusion rates and significant volumetric expansion present serious challenges for using SnO<small><sub>2</sub></small>/SnO composites as promising anode materials in advanced lithium-ion batteries. To address this issue, we synthesized a novel Sn@C/CNT composite from a Sn-based organometallic complex with 2-methylimidazole and oxidized multi-wall carbon nanotubes. Structural analysis has confirmed that the tin-based composites consist of nano-lamellar assemblies modified by oxidized carbon nanotubes. In these composites, the tin active particles have an average size ranging from 2 to 3 nm, while the layered nano-lamellar structure has an average thickness of 6 nm. The resulting Sn@C/CNT anode material demonstrated a stable specific capacity of up to 688 mA h g<small><sup>−1</sup></small> even after 500 cycles at a higher charging–discharging current density of 1 A g<small><sup>−1</sup></small>. The significant diffusion-controlled lithium ion diffusion coefficient of approximately 10<small><sup>−12</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small> indicates vigorous dynamic activity from reversible Sn–Li alloy electrochemical reactions. Additionally, the substantial capacity-controlled lithium ion diffusion coefficient, which drops to 10<small><sup>−16</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small>, illustrates the predominance of the pseudo-capacitance arising from interface reaction. By coupling electrochemical impedance spectroscopy, galvanostatic intermittent titration technique, and linear sweep voltammetry, the mixed lithium-ion diffusion effect was proposed to explain the remarkable adaptability of these Sn-based anode materials for cycling performance across a wide range of specific currents. This work provides a new intention for resolving the drastic volumetric expansion and unsatisfactory dynamic activity of Sn-based anode materials.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 24\",\"pages\":\" 19176-19191\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02378e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02378e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02378e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

较低的锂离子扩散速率和显著的体积膨胀是将SnO2/SnO复合材料作为先进锂离子电池负极材料的严峻挑战。为了解决这一问题,我们合成了一种新的Sn@C/CNT复合材料,该复合材料由锡基有机金属配合物与2-甲基咪唑和氧化多壁碳纳米管组成。结构分析证实了锡基复合材料是由氧化碳纳米管修饰的纳米层状组件组成的。在这些复合材料中,锡活性颗粒的平均尺寸在2 ~ 3 nm之间,而层状纳米片层结构的平均厚度为6 nm。所得到的Sn@C/CNT阳极材料在更高的充放电电流密度为1 a g−1的情况下,即使在500次循环后,也显示出高达688 mA h g−1的稳定比容量。显著的扩散控制锂离子扩散系数约为10 ~ 12 cm2 s−1,表明可逆Sn-Li合金电化学反应具有强烈的动力学活性。此外,容量控制的锂离子扩散系数降至10−16 cm2 s−1,说明界面反应产生的伪电容占主导地位。通过电化学阻抗谱、恒流间歇滴定技术和线性扫描伏安法的耦合,研究人员提出了混合锂离子扩散效应,以解释这些锡基负极材料在广泛的特定电流范围内循环性能的显著适应性。本工作为解决锡基阳极材料体积膨胀剧烈和动态活性不佳的问题提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effective anode materials for in situ Sn@C nano-lamellar assembly with doped nanotubes in lithium-ion batteries†

Effective anode materials for in situ Sn@C nano-lamellar assembly with doped nanotubes in lithium-ion batteries†

Lower lithium-ion diffusion rates and significant volumetric expansion present serious challenges for using SnO2/SnO composites as promising anode materials in advanced lithium-ion batteries. To address this issue, we synthesized a novel Sn@C/CNT composite from a Sn-based organometallic complex with 2-methylimidazole and oxidized multi-wall carbon nanotubes. Structural analysis has confirmed that the tin-based composites consist of nano-lamellar assemblies modified by oxidized carbon nanotubes. In these composites, the tin active particles have an average size ranging from 2 to 3 nm, while the layered nano-lamellar structure has an average thickness of 6 nm. The resulting Sn@C/CNT anode material demonstrated a stable specific capacity of up to 688 mA h g−1 even after 500 cycles at a higher charging–discharging current density of 1 A g−1. The significant diffusion-controlled lithium ion diffusion coefficient of approximately 10−12 cm2 s−1 indicates vigorous dynamic activity from reversible Sn–Li alloy electrochemical reactions. Additionally, the substantial capacity-controlled lithium ion diffusion coefficient, which drops to 10−16 cm2 s−1, illustrates the predominance of the pseudo-capacitance arising from interface reaction. By coupling electrochemical impedance spectroscopy, galvanostatic intermittent titration technique, and linear sweep voltammetry, the mixed lithium-ion diffusion effect was proposed to explain the remarkable adaptability of these Sn-based anode materials for cycling performance across a wide range of specific currents. This work provides a new intention for resolving the drastic volumetric expansion and unsatisfactory dynamic activity of Sn-based anode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信