基于微rna的1型糖尿病动态风险评分

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mugdha V. Joglekar, Wilson K. M. Wong, Pooja S. Kunte, Hrishikesh P. Hardikar, Reshmi A. Kulkarni, Ikhlak Ahmed, Ryan J. Farr, Nhan Ho Trong Pham, Madilyn Coles, Simranjeet Kaur, Cody L. Maynard, Riley Hayward, Vinod Thorat, Aniruddha Pant, Ammira A. Akil, Kim C. Donaghue, Alicia J. Jenkins, Milan K. Piya, Maria E. Craig, William M. Hague, Chittaranjan S. Yajnik, Juliana C. N. Chan, A. M. James Shapiro, Elizabeth A. Davis, Timothy W. Jones, Stephen E. Gitelman, Ronald C. W. Ma, Flemming Pociot, Anandwardhan A. Hardikar
{"title":"基于微rna的1型糖尿病动态风险评分","authors":"Mugdha V. Joglekar, Wilson K. M. Wong, Pooja S. Kunte, Hrishikesh P. Hardikar, Reshmi A. Kulkarni, Ikhlak Ahmed, Ryan J. Farr, Nhan Ho Trong Pham, Madilyn Coles, Simranjeet Kaur, Cody L. Maynard, Riley Hayward, Vinod Thorat, Aniruddha Pant, Ammira A. Akil, Kim C. Donaghue, Alicia J. Jenkins, Milan K. Piya, Maria E. Craig, William M. Hague, Chittaranjan S. Yajnik, Juliana C. N. Chan, A. M. James Shapiro, Elizabeth A. Davis, Timothy W. Jones, Stephen E. Gitelman, Ronald C. W. Ma, Flemming Pociot, Anandwardhan A. Hardikar","doi":"10.1038/s41591-025-03730-7","DOIUrl":null,"url":null,"abstract":"<p>Identifying individuals at high risk of type 1 diabetes (T1D) is crucial as disease-delaying medications are available. Here we report a microRNA (miRNA)-based dynamic (responsive to the environment) risk score developed using multicenter, multiethnic and multicountry (‘multicontext’) cohorts for T1D risk stratification. Discovery (wet and dry lab) analysis identified 50 miRNAs associated with functional β cell loss, which is a hallmark of T1D. These miRNAs measured across <i>n</i> = 2,204 individuals from four contexts (4C: Australia, Denmark, Hong Kong SAR People’s Republic of China, India) led to a four-context, miRNA-based dynamic risk score (DRS) that effectively stratified individuals with and without T1D. Generative artificial intelligence was used to create an enhanced four-context, miRNA-based DRS, which offered good predictive power (area under the curve = 0.84) for T1D stratification in a separate multicontext validation dataset (<i>n</i> = 662), and accurately predicted future exogenous insulin requirement at 1 hour of islet transplantation. In a clinical trial assessing the imatinib drug therapy, baseline miRNA signature, rather than clinical characteristics, distinguished drug responders from nonresponders at 1 year. This study harnessed machine learning/generative artificial intelligence approaches, identifying and validating a miRNA-based DRS for T1D discrimination and treatment efficacy prediction.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"9 1","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microRNA-based dynamic risk score for type 1 diabetes\",\"authors\":\"Mugdha V. Joglekar, Wilson K. M. Wong, Pooja S. Kunte, Hrishikesh P. Hardikar, Reshmi A. Kulkarni, Ikhlak Ahmed, Ryan J. Farr, Nhan Ho Trong Pham, Madilyn Coles, Simranjeet Kaur, Cody L. Maynard, Riley Hayward, Vinod Thorat, Aniruddha Pant, Ammira A. Akil, Kim C. Donaghue, Alicia J. Jenkins, Milan K. Piya, Maria E. Craig, William M. Hague, Chittaranjan S. Yajnik, Juliana C. N. Chan, A. M. James Shapiro, Elizabeth A. Davis, Timothy W. Jones, Stephen E. Gitelman, Ronald C. W. Ma, Flemming Pociot, Anandwardhan A. Hardikar\",\"doi\":\"10.1038/s41591-025-03730-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying individuals at high risk of type 1 diabetes (T1D) is crucial as disease-delaying medications are available. Here we report a microRNA (miRNA)-based dynamic (responsive to the environment) risk score developed using multicenter, multiethnic and multicountry (‘multicontext’) cohorts for T1D risk stratification. Discovery (wet and dry lab) analysis identified 50 miRNAs associated with functional β cell loss, which is a hallmark of T1D. These miRNAs measured across <i>n</i> = 2,204 individuals from four contexts (4C: Australia, Denmark, Hong Kong SAR People’s Republic of China, India) led to a four-context, miRNA-based dynamic risk score (DRS) that effectively stratified individuals with and without T1D. Generative artificial intelligence was used to create an enhanced four-context, miRNA-based DRS, which offered good predictive power (area under the curve = 0.84) for T1D stratification in a separate multicontext validation dataset (<i>n</i> = 662), and accurately predicted future exogenous insulin requirement at 1 hour of islet transplantation. In a clinical trial assessing the imatinib drug therapy, baseline miRNA signature, rather than clinical characteristics, distinguished drug responders from nonresponders at 1 year. This study harnessed machine learning/generative artificial intelligence approaches, identifying and validating a miRNA-based DRS for T1D discrimination and treatment efficacy prediction.</p>\",\"PeriodicalId\":19037,\"journal\":{\"name\":\"Nature Medicine\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":58.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41591-025-03730-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03730-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

识别1型糖尿病(T1D)的高风险个体是至关重要的,因为可以获得延迟疾病的药物。在这里,我们报告了一种基于microRNA (miRNA)的动态(对环境的响应)风险评分,该评分采用多中心、多种族和多国家(“多背景”)队列进行T1D风险分层。发现(干湿实验室)分析确定了50个与功能性β细胞损失相关的mirna,这是T1D的标志。这些mirna测量了来自四个环境(澳大利亚,丹麦,中华人民共和国香港特别行政区,印度)的n = 2204名个体,得出了一个基于mirna的四环境动态风险评分(DRS),有效地对患有和不患有T1D的个体进行了分层。生成式人工智能用于创建增强的四上下文、基于mirna的DRS,该DRS在单独的多上下文验证数据集(n = 662)中为T1D分层提供了良好的预测能力(曲线下面积= 0.84),并准确预测了胰岛移植1小时后未来的外源性胰岛素需求。在一项评估伊马替尼药物治疗的临床试验中,基线miRNA特征,而不是临床特征,在1年内区分药物反应和无反应。本研究利用机器学习/生成式人工智能方法,识别并验证了基于mirna的T1D识别和治疗效果预测的DRS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A microRNA-based dynamic risk score for type 1 diabetes

A microRNA-based dynamic risk score for type 1 diabetes

Identifying individuals at high risk of type 1 diabetes (T1D) is crucial as disease-delaying medications are available. Here we report a microRNA (miRNA)-based dynamic (responsive to the environment) risk score developed using multicenter, multiethnic and multicountry (‘multicontext’) cohorts for T1D risk stratification. Discovery (wet and dry lab) analysis identified 50 miRNAs associated with functional β cell loss, which is a hallmark of T1D. These miRNAs measured across n = 2,204 individuals from four contexts (4C: Australia, Denmark, Hong Kong SAR People’s Republic of China, India) led to a four-context, miRNA-based dynamic risk score (DRS) that effectively stratified individuals with and without T1D. Generative artificial intelligence was used to create an enhanced four-context, miRNA-based DRS, which offered good predictive power (area under the curve = 0.84) for T1D stratification in a separate multicontext validation dataset (n = 662), and accurately predicted future exogenous insulin requirement at 1 hour of islet transplantation. In a clinical trial assessing the imatinib drug therapy, baseline miRNA signature, rather than clinical characteristics, distinguished drug responders from nonresponders at 1 year. This study harnessed machine learning/generative artificial intelligence approaches, identifying and validating a miRNA-based DRS for T1D discrimination and treatment efficacy prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信