{"title":"按需小胶质细胞提供治疗阿尔茨海默病的有效载荷","authors":"Jessica M. Thanos, John R. Lukens","doi":"10.1016/j.stem.2025.05.003","DOIUrl":null,"url":null,"abstract":"In this issue, Chadarevian et al. showed that engraftment of human iPSC-derived microglia (iMG) engineered to express secreted neprilysin (sNEP) under the plaque-responsive CD9 promoter reduces amyloid burden, neuronal damage, and inflammation in an Alzheimer’s disease (AD) mouse model.<span><span><sup>1</sup></span></span> These findings establish a cell-based strategy to treat neurological diseases.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"9 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-demand microglia deliver the therapeutic payload in Alzheimer’s disease\",\"authors\":\"Jessica M. Thanos, John R. Lukens\",\"doi\":\"10.1016/j.stem.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this issue, Chadarevian et al. showed that engraftment of human iPSC-derived microglia (iMG) engineered to express secreted neprilysin (sNEP) under the plaque-responsive CD9 promoter reduces amyloid burden, neuronal damage, and inflammation in an Alzheimer’s disease (AD) mouse model.<span><span><sup>1</sup></span></span> These findings establish a cell-based strategy to treat neurological diseases.\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2025.05.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.05.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
On-demand microglia deliver the therapeutic payload in Alzheimer’s disease
In this issue, Chadarevian et al. showed that engraftment of human iPSC-derived microglia (iMG) engineered to express secreted neprilysin (sNEP) under the plaque-responsive CD9 promoter reduces amyloid burden, neuronal damage, and inflammation in an Alzheimer’s disease (AD) mouse model.1 These findings establish a cell-based strategy to treat neurological diseases.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.