剪裁供体-受体共聚物构象,以尽量减少钙钛矿太阳能电池的非辐射电压损失

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Xuelin Wang , Lu Yao , Haotian Chen , Shasha Zhang , Limei Huang , Zaifei Ma , Qidan Ling , Hongyu Zhen
{"title":"剪裁供体-受体共聚物构象,以尽量减少钙钛矿太阳能电池的非辐射电压损失","authors":"Xuelin Wang ,&nbsp;Lu Yao ,&nbsp;Haotian Chen ,&nbsp;Shasha Zhang ,&nbsp;Limei Huang ,&nbsp;Zaifei Ma ,&nbsp;Qidan Ling ,&nbsp;Hongyu Zhen","doi":"10.1016/j.cej.2025.164430","DOIUrl":null,"url":null,"abstract":"<div><div>Non-radiative recombination at interfaces remains a critical bottleneck for achieving high open-circuit voltage (<em>V</em><sub>OC</sub>) in perovskite solar cells (PVSCs). Here, we propose a molecular design strategy of non-equivalent electron donor-electron acceptor (D-A) copolymers, which effectively reduces the non-radiative voltage loss (<span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span>) from 0.176 V to 0.127 V through synergistic optimization of interfacial energy alignment and defect passivation. By tailoring the D:A ratio in indacenodithiophene-benzodithiophene-4,8-dione-based polymers, the optimal B-20 (D:A = 3:2) achieves the lowest <span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span> in the series, directly attributed to its enhanced planar molecular conformation and tighter intermolecular packing (π-π spacing: 4.24 Å). Density functional theory calculations and grazing incidence wide-angle X-ray scattering reveal that the D-A-D-D segment in B-20 exhibits superior coplanarity and π-π stacking, boosting hole mobility to 8.31 × 10<sup>−4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and reducing interfacial carrier accumulation. These structural advantages, coupled with effective defect passivation via Lewis base interactions, collectively suppress non-radiative recombination. Consequently, the PVSCs using B-20 achieve a champion power conversion efficiency (PCE) of 22.35 % with a <em>V</em><sub>OC</sub> of 1.19 V, and a leading <em>V</em><sub>OC</sub> of 1.20 V at the PCE of 22.09 %, representing one of the most impressive <em>V</em><sub>OC</sub> values among the organic-inorganic hybrid PVSCs employing dopant-free polymeric HTMs, and demonstrating the critical role of molecular conformation control in mitigating <span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span> for high-performance PVSCs.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"518 ","pages":"Article 164430"},"PeriodicalIF":13.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring donor-acceptor copolymer conformations to minimize non-radiative voltage loss in perovskite solar cells\",\"authors\":\"Xuelin Wang ,&nbsp;Lu Yao ,&nbsp;Haotian Chen ,&nbsp;Shasha Zhang ,&nbsp;Limei Huang ,&nbsp;Zaifei Ma ,&nbsp;Qidan Ling ,&nbsp;Hongyu Zhen\",\"doi\":\"10.1016/j.cej.2025.164430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-radiative recombination at interfaces remains a critical bottleneck for achieving high open-circuit voltage (<em>V</em><sub>OC</sub>) in perovskite solar cells (PVSCs). Here, we propose a molecular design strategy of non-equivalent electron donor-electron acceptor (D-A) copolymers, which effectively reduces the non-radiative voltage loss (<span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span>) from 0.176 V to 0.127 V through synergistic optimization of interfacial energy alignment and defect passivation. By tailoring the D:A ratio in indacenodithiophene-benzodithiophene-4,8-dione-based polymers, the optimal B-20 (D:A = 3:2) achieves the lowest <span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span> in the series, directly attributed to its enhanced planar molecular conformation and tighter intermolecular packing (π-π spacing: 4.24 Å). Density functional theory calculations and grazing incidence wide-angle X-ray scattering reveal that the D-A-D-D segment in B-20 exhibits superior coplanarity and π-π stacking, boosting hole mobility to 8.31 × 10<sup>−4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and reducing interfacial carrier accumulation. These structural advantages, coupled with effective defect passivation via Lewis base interactions, collectively suppress non-radiative recombination. Consequently, the PVSCs using B-20 achieve a champion power conversion efficiency (PCE) of 22.35 % with a <em>V</em><sub>OC</sub> of 1.19 V, and a leading <em>V</em><sub>OC</sub> of 1.20 V at the PCE of 22.09 %, representing one of the most impressive <em>V</em><sub>OC</sub> values among the organic-inorganic hybrid PVSCs employing dopant-free polymeric HTMs, and demonstrating the critical role of molecular conformation control in mitigating <span><math><mi>Δ</mi><msub><mi>V</mi><mi>nr</mi></msub></math></span> for high-performance PVSCs.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"518 \",\"pages\":\"Article 164430\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894725052660\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725052660","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在钙钛矿太阳能电池(PVSCs)中,界面处的非辐射复合仍然是实现高开路电压(VOC)的关键瓶颈。本文提出了一种非等效电子供体-电子受体(D-A)共聚物的分子设计策略,通过界面能取向和缺陷钝化的协同优化,有效地将非辐射电压损失(ΔVnrΔVnr)从0.176 V降低到0.127 V。通过调整吲哚二噻吩-苯二噻吩-4,8-二酮基聚合物的D:A比,最佳的B-20 (D:A = 3:2)达到了该系列中最低的ΔVnrΔVnr,直接归功于其增强的平面分子构象和更紧密的分子间填充(π-π间距:4.24 Å)。密度泛函理论计算和掠射广角x射线散射表明,B-20中的D-A-D-D段具有优越的共面性和π-π堆积,将空穴迁移率提高到8.31 × 10−4 cm2 V−1 s−1,减少了界面载流子积累。这些结构优势,加上通过路易斯碱相互作用有效的缺陷钝化,共同抑制了非辐射复合。因此,使用B-20的PVSCs获得了最高的功率转换效率(PCE)为22.35 %,VOC为1.19 V, PCE为22.09 %,VOC为1.20 V,代表了使用无掺杂聚合物HTMs的有机-无机杂化PVSCs中最令人信服的VOC值之一,并证明了分子构象控制在降低ΔVnrΔVnr对高性能PVSCs的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring donor-acceptor copolymer conformations to minimize non-radiative voltage loss in perovskite solar cells
Non-radiative recombination at interfaces remains a critical bottleneck for achieving high open-circuit voltage (VOC) in perovskite solar cells (PVSCs). Here, we propose a molecular design strategy of non-equivalent electron donor-electron acceptor (D-A) copolymers, which effectively reduces the non-radiative voltage loss (ΔVnr) from 0.176 V to 0.127 V through synergistic optimization of interfacial energy alignment and defect passivation. By tailoring the D:A ratio in indacenodithiophene-benzodithiophene-4,8-dione-based polymers, the optimal B-20 (D:A = 3:2) achieves the lowest ΔVnr in the series, directly attributed to its enhanced planar molecular conformation and tighter intermolecular packing (π-π spacing: 4.24 Å). Density functional theory calculations and grazing incidence wide-angle X-ray scattering reveal that the D-A-D-D segment in B-20 exhibits superior coplanarity and π-π stacking, boosting hole mobility to 8.31 × 10−4 cm2 V−1 s−1 and reducing interfacial carrier accumulation. These structural advantages, coupled with effective defect passivation via Lewis base interactions, collectively suppress non-radiative recombination. Consequently, the PVSCs using B-20 achieve a champion power conversion efficiency (PCE) of 22.35 % with a VOC of 1.19 V, and a leading VOC of 1.20 V at the PCE of 22.09 %, representing one of the most impressive VOC values among the organic-inorganic hybrid PVSCs employing dopant-free polymeric HTMs, and demonstrating the critical role of molecular conformation control in mitigating ΔVnr for high-performance PVSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信