Ruixian Liu, Matthew B. Stone, Shang Gao, Mitsutaka Nakamura, Kazuya Kamazawa, Aleksandra Krajewska, Helen C. Walker, Peng Cheng, Rong Yu, Qimiao Si, Pengcheng Dai, Xingye Lu
{"title":"FeSe向列量子无序态中的自旋相关","authors":"Ruixian Liu, Matthew B. Stone, Shang Gao, Mitsutaka Nakamura, Kazuya Kamazawa, Aleksandra Krajewska, Helen C. Walker, Peng Cheng, Rong Yu, Qimiao Si, Pengcheng Dai, Xingye Lu","doi":"10.1038/s41467-025-60071-2","DOIUrl":null,"url":null,"abstract":"<p>The quantum-disordered state in FeSe, intertwined with superconductivity and nematicity, has been a research focus in iron-based superconductors. However, the intrinsic spin excitations across the entire Brillouin zone in detwinned FeSe, crucial for understanding its magnetism and superconductivity, have remained unresolved. Using inelastic neutron scattering, we reveal that stripe spin excitations (<b>Q</b> = (1, 0)/(0, 1)) exhibit the <i>C</i><sub>2</sub> symmetry, while Néel spin excitations (<b>Q</b> = (1, 1)) retain <i>C</i><sub>4</sub> symmetry within the nematic state. Temperature-dependent differences between <b>Q</b> = (1, 0) and (0, 1) spin excitations above the structural transition unambiguously reveals the nematic quantum disordered state. Comparison with NaFeAs suggests the Néel excitations originate from enhanced 3<i>d</i><sub><i>x</i><i>y</i></sub> orbital correlations. Modeling the stripe dispersions using a <i>J</i><sub>1</sub>-<i>K</i>-<i>J</i><sub>2</sub> Heisenberg Hamiltonian, we establish a spin-interaction phase diagram, positioning FeSe near a crossover regime between the antiferroquadrupolar, Néel, and stripe orders. Our results provide key insights into the microscopic spin interactions and their role in the intertwined orders in iron-based superconductors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"168 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin correlations in the nematic quantum disordered state of FeSe\",\"authors\":\"Ruixian Liu, Matthew B. Stone, Shang Gao, Mitsutaka Nakamura, Kazuya Kamazawa, Aleksandra Krajewska, Helen C. Walker, Peng Cheng, Rong Yu, Qimiao Si, Pengcheng Dai, Xingye Lu\",\"doi\":\"10.1038/s41467-025-60071-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum-disordered state in FeSe, intertwined with superconductivity and nematicity, has been a research focus in iron-based superconductors. However, the intrinsic spin excitations across the entire Brillouin zone in detwinned FeSe, crucial for understanding its magnetism and superconductivity, have remained unresolved. Using inelastic neutron scattering, we reveal that stripe spin excitations (<b>Q</b> = (1, 0)/(0, 1)) exhibit the <i>C</i><sub>2</sub> symmetry, while Néel spin excitations (<b>Q</b> = (1, 1)) retain <i>C</i><sub>4</sub> symmetry within the nematic state. Temperature-dependent differences between <b>Q</b> = (1, 0) and (0, 1) spin excitations above the structural transition unambiguously reveals the nematic quantum disordered state. Comparison with NaFeAs suggests the Néel excitations originate from enhanced 3<i>d</i><sub><i>x</i><i>y</i></sub> orbital correlations. Modeling the stripe dispersions using a <i>J</i><sub>1</sub>-<i>K</i>-<i>J</i><sub>2</sub> Heisenberg Hamiltonian, we establish a spin-interaction phase diagram, positioning FeSe near a crossover regime between the antiferroquadrupolar, Néel, and stripe orders. Our results provide key insights into the microscopic spin interactions and their role in the intertwined orders in iron-based superconductors.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60071-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60071-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Spin correlations in the nematic quantum disordered state of FeSe
The quantum-disordered state in FeSe, intertwined with superconductivity and nematicity, has been a research focus in iron-based superconductors. However, the intrinsic spin excitations across the entire Brillouin zone in detwinned FeSe, crucial for understanding its magnetism and superconductivity, have remained unresolved. Using inelastic neutron scattering, we reveal that stripe spin excitations (Q = (1, 0)/(0, 1)) exhibit the C2 symmetry, while Néel spin excitations (Q = (1, 1)) retain C4 symmetry within the nematic state. Temperature-dependent differences between Q = (1, 0) and (0, 1) spin excitations above the structural transition unambiguously reveals the nematic quantum disordered state. Comparison with NaFeAs suggests the Néel excitations originate from enhanced 3dxy orbital correlations. Modeling the stripe dispersions using a J1-K-J2 Heisenberg Hamiltonian, we establish a spin-interaction phase diagram, positioning FeSe near a crossover regime between the antiferroquadrupolar, Néel, and stripe orders. Our results provide key insights into the microscopic spin interactions and their role in the intertwined orders in iron-based superconductors.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.