De Fan, Wei Hu, Nan Xu, Ethan R. Seto, John Clark Lagarias, Xuemei Chen, Meng Chen
{"title":"触发拟南芥白天热形态发生的多传感器高温信号框架","authors":"De Fan, Wei Hu, Nan Xu, Ethan R. Seto, John Clark Lagarias, Xuemei Chen, Meng Chen","doi":"10.1038/s41467-025-60498-7","DOIUrl":null,"url":null,"abstract":"<p>The phytochrome B (phyB) photoreceptor and EARLY FLOWERING 3 (ELF3) are two major plant thermosensors that monitor high temperatures primarily at night. However, high temperatures naturally occur during the daytime; the mechanism of daytime thermosensing and whether these thermosensors can also operate under intense sunlight remain ambiguous. Here, we show that phyB plays a substantial role in daytime thermosensing in Arabidopsis, and its thermosensing function becomes negligible only when the red light intensity reaches 50 μmol m<sup>−2</sup> s<sup>−1</sup>. Leveraging this restrictive condition for phyB thermosensing, we reveal that triggering daytime thermomorphogenesis requires two additional thermosensory pathways. High temperatures induce starch breakdown in chloroplasts and the production of sucrose, which stabilizes the central thermal regulator PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) by antagonizing phyB-dependent PIF4 degradation. In parallel, high temperatures release the inhibition of <i>PIF4</i> transcription and PIF4 activity by ELF3. Thus, our study elucidates a multisensor high-temperature signaling framework for understanding diverse thermo-inducible plant behaviors in daylight.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multisensor high-temperature signaling framework for triggering daytime thermomorphogenesis in Arabidopsis\",\"authors\":\"De Fan, Wei Hu, Nan Xu, Ethan R. Seto, John Clark Lagarias, Xuemei Chen, Meng Chen\",\"doi\":\"10.1038/s41467-025-60498-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The phytochrome B (phyB) photoreceptor and EARLY FLOWERING 3 (ELF3) are two major plant thermosensors that monitor high temperatures primarily at night. However, high temperatures naturally occur during the daytime; the mechanism of daytime thermosensing and whether these thermosensors can also operate under intense sunlight remain ambiguous. Here, we show that phyB plays a substantial role in daytime thermosensing in Arabidopsis, and its thermosensing function becomes negligible only when the red light intensity reaches 50 μmol m<sup>−2</sup> s<sup>−1</sup>. Leveraging this restrictive condition for phyB thermosensing, we reveal that triggering daytime thermomorphogenesis requires two additional thermosensory pathways. High temperatures induce starch breakdown in chloroplasts and the production of sucrose, which stabilizes the central thermal regulator PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) by antagonizing phyB-dependent PIF4 degradation. In parallel, high temperatures release the inhibition of <i>PIF4</i> transcription and PIF4 activity by ELF3. Thus, our study elucidates a multisensor high-temperature signaling framework for understanding diverse thermo-inducible plant behaviors in daylight.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60498-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60498-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A multisensor high-temperature signaling framework for triggering daytime thermomorphogenesis in Arabidopsis
The phytochrome B (phyB) photoreceptor and EARLY FLOWERING 3 (ELF3) are two major plant thermosensors that monitor high temperatures primarily at night. However, high temperatures naturally occur during the daytime; the mechanism of daytime thermosensing and whether these thermosensors can also operate under intense sunlight remain ambiguous. Here, we show that phyB plays a substantial role in daytime thermosensing in Arabidopsis, and its thermosensing function becomes negligible only when the red light intensity reaches 50 μmol m−2 s−1. Leveraging this restrictive condition for phyB thermosensing, we reveal that triggering daytime thermomorphogenesis requires two additional thermosensory pathways. High temperatures induce starch breakdown in chloroplasts and the production of sucrose, which stabilizes the central thermal regulator PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) by antagonizing phyB-dependent PIF4 degradation. In parallel, high temperatures release the inhibition of PIF4 transcription and PIF4 activity by ELF3. Thus, our study elucidates a multisensor high-temperature signaling framework for understanding diverse thermo-inducible plant behaviors in daylight.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.