Javier Cabello-Garcia, Rakesh Mukherjee, Wooli Bae, Guy-Bart V. Stan, Thomas E. Ouldridge
{"title":"无酶催化模板DNA二聚化的信息传播与弱产物抑制","authors":"Javier Cabello-Garcia, Rakesh Mukherjee, Wooli Bae, Guy-Bart V. Stan, Thomas E. Ouldridge","doi":"10.1038/s41557-025-01831-x","DOIUrl":null,"url":null,"abstract":"<p>Information propagation by sequence-specific, template-catalysed molecular assembly is a key process facilitating life’s biochemical complexity, yielding thousands of sequence-defined proteins from only 20 distinct building blocks. However, exploitation of catalytic templating is rare in non-biological contexts, particularly in enzyme-free environments, where even the template-catalysed formation of dimers is challenging. Typically, product inhibition—the tendency of products to bind to templates more strongly than individual monomers—prevents catalytic turnover. Here we present a rationally designed enzyme-free system in which a DNA template catalyses, with weak product inhibition, the production of sequence-specific DNA dimers. We demonstrate selective templating of nine different dimers with high specificity and catalytic turnover, then we show that the products can participate in downstream reactions, and finally that the dimerization can be coupled to covalent bond formation. Most importantly, our mechanism demonstrates a design principle for constructing synthetic molecular templating systems, a first step towards applying this powerful motif in non-biological contexts to construct many complex molecules and materials from a small number of building blocks.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"5 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information propagation through enzyme-free catalytic templating of DNA dimerization with weak product inhibition\",\"authors\":\"Javier Cabello-Garcia, Rakesh Mukherjee, Wooli Bae, Guy-Bart V. Stan, Thomas E. Ouldridge\",\"doi\":\"10.1038/s41557-025-01831-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Information propagation by sequence-specific, template-catalysed molecular assembly is a key process facilitating life’s biochemical complexity, yielding thousands of sequence-defined proteins from only 20 distinct building blocks. However, exploitation of catalytic templating is rare in non-biological contexts, particularly in enzyme-free environments, where even the template-catalysed formation of dimers is challenging. Typically, product inhibition—the tendency of products to bind to templates more strongly than individual monomers—prevents catalytic turnover. Here we present a rationally designed enzyme-free system in which a DNA template catalyses, with weak product inhibition, the production of sequence-specific DNA dimers. We demonstrate selective templating of nine different dimers with high specificity and catalytic turnover, then we show that the products can participate in downstream reactions, and finally that the dimerization can be coupled to covalent bond formation. Most importantly, our mechanism demonstrates a design principle for constructing synthetic molecular templating systems, a first step towards applying this powerful motif in non-biological contexts to construct many complex molecules and materials from a small number of building blocks.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-025-01831-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01831-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Information propagation through enzyme-free catalytic templating of DNA dimerization with weak product inhibition
Information propagation by sequence-specific, template-catalysed molecular assembly is a key process facilitating life’s biochemical complexity, yielding thousands of sequence-defined proteins from only 20 distinct building blocks. However, exploitation of catalytic templating is rare in non-biological contexts, particularly in enzyme-free environments, where even the template-catalysed formation of dimers is challenging. Typically, product inhibition—the tendency of products to bind to templates more strongly than individual monomers—prevents catalytic turnover. Here we present a rationally designed enzyme-free system in which a DNA template catalyses, with weak product inhibition, the production of sequence-specific DNA dimers. We demonstrate selective templating of nine different dimers with high specificity and catalytic turnover, then we show that the products can participate in downstream reactions, and finally that the dimerization can be coupled to covalent bond formation. Most importantly, our mechanism demonstrates a design principle for constructing synthetic molecular templating systems, a first step towards applying this powerful motif in non-biological contexts to construct many complex molecules and materials from a small number of building blocks.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.