机械化学二氧化碳捕获和转化

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Runnan Guan, Li Sheng, Changqing Li, Jiwon Gu, Jeong-Min Seo, Boo-Jae Jang, Seung-Hyeon Kim, Jiwon Kim, Hankwon Lim, Qunxiang Li, Jong-Beom Baek
{"title":"机械化学二氧化碳捕获和转化","authors":"Runnan Guan, Li Sheng, Changqing Li, Jiwon Gu, Jeong-Min Seo, Boo-Jae Jang, Seung-Hyeon Kim, Jiwon Kim, Hankwon Lim, Qunxiang Li, Jong-Beom Baek","doi":"10.1038/s41565-025-01949-6","DOIUrl":null,"url":null,"abstract":"<p>Developing a direct carbon dioxide (CO<sub>2</sub>) capture and methanation method is one of the most important challenges to achieving carbon neutrality. However, converting CO<sub>2</sub> into methane (CH<sub>4</sub>) kinetically requires the activation of stable CO<sub>2</sub> at high temperatures (300–500 °C), while the CO<sub>2</sub>-to-CH<sub>4</sub> conversion thermodynamically favours low temperatures. Here we report an efficient mechanochemical CO<sub>2</sub> capture and conversion under mild conditions (65 °C). Using commercial zirconium oxide (ZrO<sub>2</sub>) and nickel catalysts, the mechanochemical CO<sub>2</sub> capture capacity was 75-fold higher than the conventional thermochemical process. The mechanochemical CO<sub>2</sub> conversion reached a nearly quantitative CO<sub>2</sub> conversion (99.2%) with CH<sub>4</sub> selectivity (98.8%). We determined that repeatedly induced abundant oxygen vacancies on ZrO<sub>2</sub> by dynamic mechanical actions are responsible for efficient CO<sub>2</sub> capture and, thus, subsequently spontaneous methanation.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"36 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemical carbon dioxide capture and conversion\",\"authors\":\"Runnan Guan, Li Sheng, Changqing Li, Jiwon Gu, Jeong-Min Seo, Boo-Jae Jang, Seung-Hyeon Kim, Jiwon Kim, Hankwon Lim, Qunxiang Li, Jong-Beom Baek\",\"doi\":\"10.1038/s41565-025-01949-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing a direct carbon dioxide (CO<sub>2</sub>) capture and methanation method is one of the most important challenges to achieving carbon neutrality. However, converting CO<sub>2</sub> into methane (CH<sub>4</sub>) kinetically requires the activation of stable CO<sub>2</sub> at high temperatures (300–500 °C), while the CO<sub>2</sub>-to-CH<sub>4</sub> conversion thermodynamically favours low temperatures. Here we report an efficient mechanochemical CO<sub>2</sub> capture and conversion under mild conditions (65 °C). Using commercial zirconium oxide (ZrO<sub>2</sub>) and nickel catalysts, the mechanochemical CO<sub>2</sub> capture capacity was 75-fold higher than the conventional thermochemical process. The mechanochemical CO<sub>2</sub> conversion reached a nearly quantitative CO<sub>2</sub> conversion (99.2%) with CH<sub>4</sub> selectivity (98.8%). We determined that repeatedly induced abundant oxygen vacancies on ZrO<sub>2</sub> by dynamic mechanical actions are responsible for efficient CO<sub>2</sub> capture and, thus, subsequently spontaneous methanation.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01949-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01949-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发一种直接的二氧化碳捕获和甲烷化方法是实现碳中和的最重要挑战之一。然而,从动力学上讲,将CO2转化为甲烷(CH4)需要在高温(300-500℃)下激活稳定的CO2,而从热力学上讲,CO2到CH4的转化倾向于低温。在这里,我们报告了在温和条件下(65°C)有效的机械化学CO2捕获和转化。采用工业氧化锆(ZrO2)和镍催化剂,机械化学CO2捕集能力比传统热化学工艺高75倍。机械化学CO2转化率达到了接近定量的CO2转化率(99.2%),CH4选择性为98.8%。我们确定,通过动态机械作用在ZrO2上反复诱导丰富的氧空位是有效的CO2捕获和随后的自发甲烷化的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanochemical carbon dioxide capture and conversion

Mechanochemical carbon dioxide capture and conversion

Developing a direct carbon dioxide (CO2) capture and methanation method is one of the most important challenges to achieving carbon neutrality. However, converting CO2 into methane (CH4) kinetically requires the activation of stable CO2 at high temperatures (300–500 °C), while the CO2-to-CH4 conversion thermodynamically favours low temperatures. Here we report an efficient mechanochemical CO2 capture and conversion under mild conditions (65 °C). Using commercial zirconium oxide (ZrO2) and nickel catalysts, the mechanochemical CO2 capture capacity was 75-fold higher than the conventional thermochemical process. The mechanochemical CO2 conversion reached a nearly quantitative CO2 conversion (99.2%) with CH4 selectivity (98.8%). We determined that repeatedly induced abundant oxygen vacancies on ZrO2 by dynamic mechanical actions are responsible for efficient CO2 capture and, thus, subsequently spontaneous methanation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信