氧化薄膜中晶体方向的铁弹性书写

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Peng, Wenjie Meng, Younji Kim, Jiyong Yoon, Liang Si, Kesen Zhao, Shuai Dong, Yubin Hou, Chuanying Xi, Li Pi, Aditya Singh, Ana M. Sanchez, Richard Beanland, Tae Won Noh, Qingyou Lu, Daesu Lee, Marin Alexe
{"title":"氧化薄膜中晶体方向的铁弹性书写","authors":"Wei Peng, Wenjie Meng, Younji Kim, Jiyong Yoon, Liang Si, Kesen Zhao, Shuai Dong, Yubin Hou, Chuanying Xi, Li Pi, Aditya Singh, Ana M. Sanchez, Richard Beanland, Tae Won Noh, Qingyou Lu, Daesu Lee, Marin Alexe","doi":"10.1038/s41565-025-01950-z","DOIUrl":null,"url":null,"abstract":"<p>Crystals often have complex structural domains, but a general method to remove or deterministically control such local heterogeneity is lacking. The resulting heterogeneity in crystal orientations obscures our understanding of material properties and can reduce the reliability and performance of related applications. Here, using shear stress from an atomic force microscope tip, we ferroelastically write local crystal orientations in oxide thin films. Applying this deterministic and reversible control to SrRuO<sub>3</sub> and (La<sub>0.7</sub>Sr<sub>0.3</sub>)(Mn<sub>0.9</sub>Ru<sub>0.1</sub>)O<sub>3</sub> films, we realize twin-free single crystals and design specific crystal-orientation domain textures at the nanoscale. Furthermore, through magnetoelastic coupling, we can mechanically manipulate the local magnetic anisotropy, and thereby write and erase functional nanoscale magnetic textures unattainable by conventional methods. Thus, pure mechanical force emerges as a means to control structural heterogeneity on demand and may make it possible to program electronic and spintronic functionalities.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"55 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelastic writing of crystal directions in oxide thin films\",\"authors\":\"Wei Peng, Wenjie Meng, Younji Kim, Jiyong Yoon, Liang Si, Kesen Zhao, Shuai Dong, Yubin Hou, Chuanying Xi, Li Pi, Aditya Singh, Ana M. Sanchez, Richard Beanland, Tae Won Noh, Qingyou Lu, Daesu Lee, Marin Alexe\",\"doi\":\"10.1038/s41565-025-01950-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crystals often have complex structural domains, but a general method to remove or deterministically control such local heterogeneity is lacking. The resulting heterogeneity in crystal orientations obscures our understanding of material properties and can reduce the reliability and performance of related applications. Here, using shear stress from an atomic force microscope tip, we ferroelastically write local crystal orientations in oxide thin films. Applying this deterministic and reversible control to SrRuO<sub>3</sub> and (La<sub>0.7</sub>Sr<sub>0.3</sub>)(Mn<sub>0.9</sub>Ru<sub>0.1</sub>)O<sub>3</sub> films, we realize twin-free single crystals and design specific crystal-orientation domain textures at the nanoscale. Furthermore, through magnetoelastic coupling, we can mechanically manipulate the local magnetic anisotropy, and thereby write and erase functional nanoscale magnetic textures unattainable by conventional methods. Thus, pure mechanical force emerges as a means to control structural heterogeneity on demand and may make it possible to program electronic and spintronic functionalities.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01950-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01950-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体通常具有复杂的结构域,但缺乏一种消除或确定性控制这种局部非均质性的通用方法。由此产生的晶体取向的不均匀性模糊了我们对材料特性的理解,并降低了相关应用的可靠性和性能。在这里,我们利用原子力显微镜尖端的剪切应力,铁弹性地在氧化薄膜上书写局部晶体取向。将这种确定性和可逆控制应用于SrRuO3和(La0.7Sr0.3)(Mn0.9Ru0.1)O3薄膜,我们在纳米尺度上实现了无双晶单晶,并设计了特定的晶体取向域织构。此外,通过磁弹性耦合,我们可以机械地操纵局部磁各向异性,从而写入和擦除传统方法无法实现的功能纳米级磁性结构。因此,纯机械力作为一种控制结构异质性的手段出现,并可能使编程电子和自旋电子功能成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferroelastic writing of crystal directions in oxide thin films

Ferroelastic writing of crystal directions in oxide thin films

Crystals often have complex structural domains, but a general method to remove or deterministically control such local heterogeneity is lacking. The resulting heterogeneity in crystal orientations obscures our understanding of material properties and can reduce the reliability and performance of related applications. Here, using shear stress from an atomic force microscope tip, we ferroelastically write local crystal orientations in oxide thin films. Applying this deterministic and reversible control to SrRuO3 and (La0.7Sr0.3)(Mn0.9Ru0.1)O3 films, we realize twin-free single crystals and design specific crystal-orientation domain textures at the nanoscale. Furthermore, through magnetoelastic coupling, we can mechanically manipulate the local magnetic anisotropy, and thereby write and erase functional nanoscale magnetic textures unattainable by conventional methods. Thus, pure mechanical force emerges as a means to control structural heterogeneity on demand and may make it possible to program electronic and spintronic functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信