解锁非小细胞肺癌的分子靶点和基于纳米医学的治疗方法。

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Kangkan Sarma, Md Habban Akhter, Amnah Alalmaie, Irfan Ahmad, Mohd Nazam Ansari, Habibullah Khalilullah, Syeda Ayesha Farhana, Shalam M Hussain, Adel M Aljadaan
{"title":"解锁非小细胞肺癌的分子靶点和基于纳米医学的治疗方法。","authors":"Kangkan Sarma, Md Habban Akhter, Amnah Alalmaie, Irfan Ahmad, Mohd Nazam Ansari, Habibullah Khalilullah, Syeda Ayesha Farhana, Shalam M Hussain, Adel M Aljadaan","doi":"10.1615/CritRevTherDrugCarrierSyst.2024053289","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer has the second highest occurrence and lowest survival rate among all cancers and incidence rates are increasing. From the tumor milieu, tumors exude chemokines and cytokines that hassle the pulmonary drug administration hinders the success of treatment. A few mutations lead to generation of lungs cancer. It has prominent levels of mutated genes such as TP53, KRAS, MET, and EGFR. Various molecular pathways involved in causing lung cancer such as PTEN/PI3K/AKT pathway, JAK/STAT pathways, RAF-MEK-ERK, PI3K-AKT-mTOR, and RALGDS-RA, PI3K, AKT, and PI3K/AKT/mTOR pathway. Inhibition of such biological pathway through active targeting, using various biological inhibitors, and blockers could help in treating and recurrence of lungs tumor. The conventional therapeutic modalities concomitant with personalized genomic nanomedicine can have potential in improving treatment regimen. This study explored the different genomic changes that occur due to the prime etiological factors, their reported treatment profile, and nanocarrier mediated therapeutic strategy by targeting tumor microenvironment (TME). Nanocarriers confront multiple obstacles in their journey to the TME therapeutic approach as leaky vasculature, large fenestration, and usually carried off from immune system and phagocytosis process. However, formulators designed a bio-functionalized carrier that enable to evade opsonization, escape immune system, modulate TME, identify reticuloendothelial system, and thus facilitates biological interaction, and enhance cellular uptake.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 4","pages":"1-58"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Molecular Targets in Non-Small-Cell Lung Cancer and a Nanomedicine-Based Remedy.\",\"authors\":\"Kangkan Sarma, Md Habban Akhter, Amnah Alalmaie, Irfan Ahmad, Mohd Nazam Ansari, Habibullah Khalilullah, Syeda Ayesha Farhana, Shalam M Hussain, Adel M Aljadaan\",\"doi\":\"10.1615/CritRevTherDrugCarrierSyst.2024053289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer has the second highest occurrence and lowest survival rate among all cancers and incidence rates are increasing. From the tumor milieu, tumors exude chemokines and cytokines that hassle the pulmonary drug administration hinders the success of treatment. A few mutations lead to generation of lungs cancer. It has prominent levels of mutated genes such as TP53, KRAS, MET, and EGFR. Various molecular pathways involved in causing lung cancer such as PTEN/PI3K/AKT pathway, JAK/STAT pathways, RAF-MEK-ERK, PI3K-AKT-mTOR, and RALGDS-RA, PI3K, AKT, and PI3K/AKT/mTOR pathway. Inhibition of such biological pathway through active targeting, using various biological inhibitors, and blockers could help in treating and recurrence of lungs tumor. The conventional therapeutic modalities concomitant with personalized genomic nanomedicine can have potential in improving treatment regimen. This study explored the different genomic changes that occur due to the prime etiological factors, their reported treatment profile, and nanocarrier mediated therapeutic strategy by targeting tumor microenvironment (TME). Nanocarriers confront multiple obstacles in their journey to the TME therapeutic approach as leaky vasculature, large fenestration, and usually carried off from immune system and phagocytosis process. However, formulators designed a bio-functionalized carrier that enable to evade opsonization, escape immune system, modulate TME, identify reticuloendothelial system, and thus facilitates biological interaction, and enhance cellular uptake.</p>\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":\"42 4\",\"pages\":\"1-58\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2024053289\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2024053289","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肺癌在所有癌症中发病率第二高,存活率最低,而且发病率还在增加。从肿瘤环境来看,肿瘤会分泌出趋化因子和细胞因子,这些因子会阻碍肺部药物的施用,从而阻碍治疗的成功。一些突变会导致肺癌的产生。它有显著水平的突变基因,如TP53, KRAS, MET和EGFR。参与肺癌发生的各种分子通路,如PTEN/PI3K/AKT通路、JAK/STAT通路、RAF-MEK-ERK、PI3K-AKT-mTOR、RALGDS-RA、PI3K、AKT、PI3K/AKT/mTOR通路。通过主动靶向、使用多种生物抑制剂和阻滞剂抑制这一生物通路,有助于肺肿瘤的治疗和复发。传统的治疗方式与个性化的基因组纳米药物相结合,在改善治疗方案方面具有潜力。本研究探讨了因主要病因而发生的不同基因组变化,其报道的治疗概况,以及靶向肿瘤微环境(TME)的纳米载体介导的治疗策略。纳米载体在进入TME治疗途径的过程中面临着许多障碍,如血管渗漏、开窗大、通常从免疫系统和吞噬过程中被带走。然而,配方师设计了一种生物功能化载体,能够逃避调理,逃避免疫系统,调节TME,识别网状内皮系统,从而促进生物相互作用,增强细胞摄取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking the Molecular Targets in Non-Small-Cell Lung Cancer and a Nanomedicine-Based Remedy.

Lung cancer has the second highest occurrence and lowest survival rate among all cancers and incidence rates are increasing. From the tumor milieu, tumors exude chemokines and cytokines that hassle the pulmonary drug administration hinders the success of treatment. A few mutations lead to generation of lungs cancer. It has prominent levels of mutated genes such as TP53, KRAS, MET, and EGFR. Various molecular pathways involved in causing lung cancer such as PTEN/PI3K/AKT pathway, JAK/STAT pathways, RAF-MEK-ERK, PI3K-AKT-mTOR, and RALGDS-RA, PI3K, AKT, and PI3K/AKT/mTOR pathway. Inhibition of such biological pathway through active targeting, using various biological inhibitors, and blockers could help in treating and recurrence of lungs tumor. The conventional therapeutic modalities concomitant with personalized genomic nanomedicine can have potential in improving treatment regimen. This study explored the different genomic changes that occur due to the prime etiological factors, their reported treatment profile, and nanocarrier mediated therapeutic strategy by targeting tumor microenvironment (TME). Nanocarriers confront multiple obstacles in their journey to the TME therapeutic approach as leaky vasculature, large fenestration, and usually carried off from immune system and phagocytosis process. However, formulators designed a bio-functionalized carrier that enable to evade opsonization, escape immune system, modulate TME, identify reticuloendothelial system, and thus facilitates biological interaction, and enhance cellular uptake.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信