{"title":"HarmGR13介导棉铃虫幼虫肌醇味觉感知。","authors":"Yu-Sheng Tan, Bao-Tong Mo, Guo-Cheng Li, Yu-Ruo Guo, Jian-Zhen Zhang, Chen-Zhu Wang","doi":"10.1371/journal.pgen.1011744","DOIUrl":null,"url":null,"abstract":"<p><p>Myo-inositol, a sugar alcohol produced by most plants, serves as a nutrient and feeding stimulant for many phytophagous insects. Inositol-sensitive taste sensilla have been characterized in many Lepidoptera larvae, but their molecular bases remain unclear. In this study, we determined the gustatory receptors (GRs) for myo-inositol in larva of Helicoverpa armigera, a worldwide crop pest. First, electrophysiological analyses revealed that medial sensilla styloconica strongly responded to myo-inositol and ribose, with weaker responses to xylose, and one GRN inside sensillum may mediate the response to these three chemicals. Based on phylogenetic analysis of sugar GRs of Lepidoptera insects and previous results on Bombyx mori, we then selected two candidate GRs, HarmGR13 and HarmGR11. Using CRISPR-Cas9, we generated knockout mutants for the two GR genes. Knocking out HarmGR13 abolished the responses of the sensilla to myo-inositol, ribose, and xylose, while knocking out HarmGR11 showed no changes. Behavioral assays confirmed that larvae of HarmGR13 homozygous mutant lost the feeding preference to myo-inositol which the wild-type larvae had. Further functional analysis with Xenopus oocytes expressing system and two-electrode voltage-clamping demonstrated that myo-inositol and ribose specifically induced concentration-dependent currents in HarmGR13-expressing oocytes. Structural predictions and molecular docking of HarmGR13 revealed three amino acid residues might be involved in ligand binding. Mutation of these residues resulted in loss of oocyte responses to myo-inositol and ribose. We reveal that HarmGR13 is a receptor that mediates the activity of the cells sensitive to inositol and ribose in larvae, providing new molecular targets for the strategy of regulating the feeding behavior of pests by modifying taste.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 6","pages":"e1011744"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165416/pdf/","citationCount":"0","resultStr":"{\"title\":\"HarmGR13 mediates myo-inositol taste perception in Helicoverpa armigera larvae.\",\"authors\":\"Yu-Sheng Tan, Bao-Tong Mo, Guo-Cheng Li, Yu-Ruo Guo, Jian-Zhen Zhang, Chen-Zhu Wang\",\"doi\":\"10.1371/journal.pgen.1011744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myo-inositol, a sugar alcohol produced by most plants, serves as a nutrient and feeding stimulant for many phytophagous insects. Inositol-sensitive taste sensilla have been characterized in many Lepidoptera larvae, but their molecular bases remain unclear. In this study, we determined the gustatory receptors (GRs) for myo-inositol in larva of Helicoverpa armigera, a worldwide crop pest. First, electrophysiological analyses revealed that medial sensilla styloconica strongly responded to myo-inositol and ribose, with weaker responses to xylose, and one GRN inside sensillum may mediate the response to these three chemicals. Based on phylogenetic analysis of sugar GRs of Lepidoptera insects and previous results on Bombyx mori, we then selected two candidate GRs, HarmGR13 and HarmGR11. Using CRISPR-Cas9, we generated knockout mutants for the two GR genes. Knocking out HarmGR13 abolished the responses of the sensilla to myo-inositol, ribose, and xylose, while knocking out HarmGR11 showed no changes. Behavioral assays confirmed that larvae of HarmGR13 homozygous mutant lost the feeding preference to myo-inositol which the wild-type larvae had. Further functional analysis with Xenopus oocytes expressing system and two-electrode voltage-clamping demonstrated that myo-inositol and ribose specifically induced concentration-dependent currents in HarmGR13-expressing oocytes. Structural predictions and molecular docking of HarmGR13 revealed three amino acid residues might be involved in ligand binding. Mutation of these residues resulted in loss of oocyte responses to myo-inositol and ribose. We reveal that HarmGR13 is a receptor that mediates the activity of the cells sensitive to inositol and ribose in larvae, providing new molecular targets for the strategy of regulating the feeding behavior of pests by modifying taste.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 6\",\"pages\":\"e1011744\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011744\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011744","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
HarmGR13 mediates myo-inositol taste perception in Helicoverpa armigera larvae.
Myo-inositol, a sugar alcohol produced by most plants, serves as a nutrient and feeding stimulant for many phytophagous insects. Inositol-sensitive taste sensilla have been characterized in many Lepidoptera larvae, but their molecular bases remain unclear. In this study, we determined the gustatory receptors (GRs) for myo-inositol in larva of Helicoverpa armigera, a worldwide crop pest. First, electrophysiological analyses revealed that medial sensilla styloconica strongly responded to myo-inositol and ribose, with weaker responses to xylose, and one GRN inside sensillum may mediate the response to these three chemicals. Based on phylogenetic analysis of sugar GRs of Lepidoptera insects and previous results on Bombyx mori, we then selected two candidate GRs, HarmGR13 and HarmGR11. Using CRISPR-Cas9, we generated knockout mutants for the two GR genes. Knocking out HarmGR13 abolished the responses of the sensilla to myo-inositol, ribose, and xylose, while knocking out HarmGR11 showed no changes. Behavioral assays confirmed that larvae of HarmGR13 homozygous mutant lost the feeding preference to myo-inositol which the wild-type larvae had. Further functional analysis with Xenopus oocytes expressing system and two-electrode voltage-clamping demonstrated that myo-inositol and ribose specifically induced concentration-dependent currents in HarmGR13-expressing oocytes. Structural predictions and molecular docking of HarmGR13 revealed three amino acid residues might be involved in ligand binding. Mutation of these residues resulted in loss of oocyte responses to myo-inositol and ribose. We reveal that HarmGR13 is a receptor that mediates the activity of the cells sensitive to inositol and ribose in larvae, providing new molecular targets for the strategy of regulating the feeding behavior of pests by modifying taste.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.