{"title":"山毛榉栎家族花、果发育及NLR基因的进化。","authors":"Xiong-De Tu, Wen-Jun Lin, Ya-Xuan Xin, Hou-Hua Fu, Cheng-Yuan Zhou, Yi-Zhe Lin, Jun Shen, Shuai Chen, Hui Lian, Shu-Zhen Jiang, Bin Liu, Yu Li, Zi Wang, Ding-Kun Liu, Zhi-Wen Wang, Siren Lan, Ming-He Li, Zhong-Jian Liu, Shi-Pin Chen","doi":"10.1186/s43897-025-00152-4","DOIUrl":null,"url":null,"abstract":"<p><p>The Fagaceae family, comprising over 900 species, is an essential component of Northern Hemisphere forest ecosystems. However, genomic data for tropical and subtropical genera Castanopsis and Castanea remain limited compared to the well-studied oak. Here, we present chromosome-level genome assemblies of Castanopsis carlesii and Castanea henryi, with assembled genome sizes of 927.24 Mb (N50 = 1.57 Mb) and 780.10 Mb (N50 = 1.07 Mb), respectively, and repetitive sequence contents of 45.79% and 44.88%. Comparative genomic analysis revealed that the estimated divergence time between Castanopsis and Castanea was determined to be 48.3 Mya and provided evidence that both genera experienced only one of the ancient whole genome triplication event (γ event) shared with most eudicots. The development of C. carlesii flower bracts and cupules was controlled by A- and E-class genes, suggesting that the cupules may originate from the bracts. Additionally, genes involved in sucrose and starch metabolism genes played distinct roles during C. carlesii fruit development. The amplification of the nucleotide-binding leucine-rich repeat (NLR) gene family in Fagaceae exhibited similarities, indicating that this expansion may be an adaptation to similar environmental pressures. This study provides valuable genomic resources for Asian Fagaceae and enhances our understanding of Fagaceae evolution.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"33"},"PeriodicalIF":10.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135283/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic insights into Castanopsis carlesii and Castanea henryi: flower and fruit development and evolution of NLR genes in the beech-oak family.\",\"authors\":\"Xiong-De Tu, Wen-Jun Lin, Ya-Xuan Xin, Hou-Hua Fu, Cheng-Yuan Zhou, Yi-Zhe Lin, Jun Shen, Shuai Chen, Hui Lian, Shu-Zhen Jiang, Bin Liu, Yu Li, Zi Wang, Ding-Kun Liu, Zhi-Wen Wang, Siren Lan, Ming-He Li, Zhong-Jian Liu, Shi-Pin Chen\",\"doi\":\"10.1186/s43897-025-00152-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fagaceae family, comprising over 900 species, is an essential component of Northern Hemisphere forest ecosystems. However, genomic data for tropical and subtropical genera Castanopsis and Castanea remain limited compared to the well-studied oak. Here, we present chromosome-level genome assemblies of Castanopsis carlesii and Castanea henryi, with assembled genome sizes of 927.24 Mb (N50 = 1.57 Mb) and 780.10 Mb (N50 = 1.07 Mb), respectively, and repetitive sequence contents of 45.79% and 44.88%. Comparative genomic analysis revealed that the estimated divergence time between Castanopsis and Castanea was determined to be 48.3 Mya and provided evidence that both genera experienced only one of the ancient whole genome triplication event (γ event) shared with most eudicots. The development of C. carlesii flower bracts and cupules was controlled by A- and E-class genes, suggesting that the cupules may originate from the bracts. Additionally, genes involved in sucrose and starch metabolism genes played distinct roles during C. carlesii fruit development. The amplification of the nucleotide-binding leucine-rich repeat (NLR) gene family in Fagaceae exhibited similarities, indicating that this expansion may be an adaptation to similar environmental pressures. This study provides valuable genomic resources for Asian Fagaceae and enhances our understanding of Fagaceae evolution.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"5 1\",\"pages\":\"33\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-025-00152-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00152-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Genomic insights into Castanopsis carlesii and Castanea henryi: flower and fruit development and evolution of NLR genes in the beech-oak family.
The Fagaceae family, comprising over 900 species, is an essential component of Northern Hemisphere forest ecosystems. However, genomic data for tropical and subtropical genera Castanopsis and Castanea remain limited compared to the well-studied oak. Here, we present chromosome-level genome assemblies of Castanopsis carlesii and Castanea henryi, with assembled genome sizes of 927.24 Mb (N50 = 1.57 Mb) and 780.10 Mb (N50 = 1.07 Mb), respectively, and repetitive sequence contents of 45.79% and 44.88%. Comparative genomic analysis revealed that the estimated divergence time between Castanopsis and Castanea was determined to be 48.3 Mya and provided evidence that both genera experienced only one of the ancient whole genome triplication event (γ event) shared with most eudicots. The development of C. carlesii flower bracts and cupules was controlled by A- and E-class genes, suggesting that the cupules may originate from the bracts. Additionally, genes involved in sucrose and starch metabolism genes played distinct roles during C. carlesii fruit development. The amplification of the nucleotide-binding leucine-rich repeat (NLR) gene family in Fagaceae exhibited similarities, indicating that this expansion may be an adaptation to similar environmental pressures. This study provides valuable genomic resources for Asian Fagaceae and enhances our understanding of Fagaceae evolution.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.