Shuting Zhou, Junrui Zhu, Houde Zhao, Zixin Huang, Kangqi Zheng, Fan Xia, Yufan Xu, Guocheng Zhao, Jijie Jiang, En Zhang, Haoyang Nian, Li Cui, Tao Sun, Xiangfeng Wang, Yanjun Zhou, Zhibiao Yang, Zhe Wang
{"title":"氯法齐明靶向刺突蛋白和RdRp对猪流行性腹泻病毒表现出高效的体外抗病毒活性。","authors":"Shuting Zhou, Junrui Zhu, Houde Zhao, Zixin Huang, Kangqi Zheng, Fan Xia, Yufan Xu, Guocheng Zhao, Jijie Jiang, En Zhang, Haoyang Nian, Li Cui, Tao Sun, Xiangfeng Wang, Yanjun Zhou, Zhibiao Yang, Zhe Wang","doi":"10.1016/j.virs.2025.05.012","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV) infection causes acute watery diarrhea in neonatal piglets, leading to substantial economic losses within the pig farming industry. This study demonstrates that clofazimine (CFZ) significantly inhibits PEDV replication in a dose-dependent manner in vitro, with negligible cytotoxicity. Findings from our time-of-addition assays indicate that CFZ effectively disrupts multiple stages of the viral infection cycle. Using a CoV-RdRp-Gluc reporter system, we evaluated the potency of CFZ against PEDV RNA-dependent RNA polymerase (RdRp), and determined a low IC<sub>50</sub> value of 0.1364 μM. Molecular docking studies further confirmed that CFZ has high binding affinity at the active sites of the spike protein and RdRp protein in PEDV. Transcriptome analysis of Vero E6 cells, with and without CFZ treatment, revealed a significant change in transcriptional activity at 8 h post-infection (hpi). Moreover, the simultaneous application of CFZ and nucleoside analogs showed enhanced the anti-PEDV effect of CFZ in vitro. Our study underscores the potential of CFZ as a viable therapeutic agent against PEDV.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clofazimine targeting the spike protein and RdRp exhibits highly efficient antiviral activity against porcine epidemic diarrhea virus in vitro.\",\"authors\":\"Shuting Zhou, Junrui Zhu, Houde Zhao, Zixin Huang, Kangqi Zheng, Fan Xia, Yufan Xu, Guocheng Zhao, Jijie Jiang, En Zhang, Haoyang Nian, Li Cui, Tao Sun, Xiangfeng Wang, Yanjun Zhou, Zhibiao Yang, Zhe Wang\",\"doi\":\"10.1016/j.virs.2025.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porcine epidemic diarrhea virus (PEDV) infection causes acute watery diarrhea in neonatal piglets, leading to substantial economic losses within the pig farming industry. This study demonstrates that clofazimine (CFZ) significantly inhibits PEDV replication in a dose-dependent manner in vitro, with negligible cytotoxicity. Findings from our time-of-addition assays indicate that CFZ effectively disrupts multiple stages of the viral infection cycle. Using a CoV-RdRp-Gluc reporter system, we evaluated the potency of CFZ against PEDV RNA-dependent RNA polymerase (RdRp), and determined a low IC<sub>50</sub> value of 0.1364 μM. Molecular docking studies further confirmed that CFZ has high binding affinity at the active sites of the spike protein and RdRp protein in PEDV. Transcriptome analysis of Vero E6 cells, with and without CFZ treatment, revealed a significant change in transcriptional activity at 8 h post-infection (hpi). Moreover, the simultaneous application of CFZ and nucleoside analogs showed enhanced the anti-PEDV effect of CFZ in vitro. Our study underscores the potential of CFZ as a viable therapeutic agent against PEDV.</p>\",\"PeriodicalId\":23654,\"journal\":{\"name\":\"Virologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.virs.2025.05.012\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2025.05.012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Clofazimine targeting the spike protein and RdRp exhibits highly efficient antiviral activity against porcine epidemic diarrhea virus in vitro.
Porcine epidemic diarrhea virus (PEDV) infection causes acute watery diarrhea in neonatal piglets, leading to substantial economic losses within the pig farming industry. This study demonstrates that clofazimine (CFZ) significantly inhibits PEDV replication in a dose-dependent manner in vitro, with negligible cytotoxicity. Findings from our time-of-addition assays indicate that CFZ effectively disrupts multiple stages of the viral infection cycle. Using a CoV-RdRp-Gluc reporter system, we evaluated the potency of CFZ against PEDV RNA-dependent RNA polymerase (RdRp), and determined a low IC50 value of 0.1364 μM. Molecular docking studies further confirmed that CFZ has high binding affinity at the active sites of the spike protein and RdRp protein in PEDV. Transcriptome analysis of Vero E6 cells, with and without CFZ treatment, revealed a significant change in transcriptional activity at 8 h post-infection (hpi). Moreover, the simultaneous application of CFZ and nucleoside analogs showed enhanced the anti-PEDV effect of CFZ in vitro. Our study underscores the potential of CFZ as a viable therapeutic agent against PEDV.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769