Zhaojiang Zuo, Sarathi M Weraduwage, Tianyu Huang, Thomas D Sharkey
{"title":"挥发性类异戊二烯如何提高植物的耐热性。","authors":"Zhaojiang Zuo, Sarathi M Weraduwage, Tianyu Huang, Thomas D Sharkey","doi":"10.1016/j.tplants.2025.05.004","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile isoprenoids mainly include isoprene and monoterpenes, which improve the thermotolerance of the emitting plant by lowering reactive oxygen species (ROS) levels, preserving chloroplast membrane ultrastructure, maintaining photosynthesis and primary metabolism, inducing heat shock proteins, and preserving growth and development. Recent data showed that isoprenoids can act as signaling molecules to improve plant thermotolerance by altering related gene expression through Ca<sup>2+</sup>-mediated signaling pathways. To promote further understanding of isoprenoid-mediated thermotolerance mechanisms, we review current understanding of isoprenoid-induced plant thermotolerance, along with new findings describing the corresponding underlying mechanisms and putative signaling pathways. This information is beneficial for the potential utilization of isoprenoids for enhancing crop tolerance to global warming either by enhancing the emission of isoprenoids or by using isoprenoid-inspired anti-high temperature agents.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How volatile isoprenoids improve plant thermotolerance.\",\"authors\":\"Zhaojiang Zuo, Sarathi M Weraduwage, Tianyu Huang, Thomas D Sharkey\",\"doi\":\"10.1016/j.tplants.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volatile isoprenoids mainly include isoprene and monoterpenes, which improve the thermotolerance of the emitting plant by lowering reactive oxygen species (ROS) levels, preserving chloroplast membrane ultrastructure, maintaining photosynthesis and primary metabolism, inducing heat shock proteins, and preserving growth and development. Recent data showed that isoprenoids can act as signaling molecules to improve plant thermotolerance by altering related gene expression through Ca<sup>2+</sup>-mediated signaling pathways. To promote further understanding of isoprenoid-mediated thermotolerance mechanisms, we review current understanding of isoprenoid-induced plant thermotolerance, along with new findings describing the corresponding underlying mechanisms and putative signaling pathways. This information is beneficial for the potential utilization of isoprenoids for enhancing crop tolerance to global warming either by enhancing the emission of isoprenoids or by using isoprenoid-inspired anti-high temperature agents.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.05.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.05.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
How volatile isoprenoids improve plant thermotolerance.
Volatile isoprenoids mainly include isoprene and monoterpenes, which improve the thermotolerance of the emitting plant by lowering reactive oxygen species (ROS) levels, preserving chloroplast membrane ultrastructure, maintaining photosynthesis and primary metabolism, inducing heat shock proteins, and preserving growth and development. Recent data showed that isoprenoids can act as signaling molecules to improve plant thermotolerance by altering related gene expression through Ca2+-mediated signaling pathways. To promote further understanding of isoprenoid-mediated thermotolerance mechanisms, we review current understanding of isoprenoid-induced plant thermotolerance, along with new findings describing the corresponding underlying mechanisms and putative signaling pathways. This information is beneficial for the potential utilization of isoprenoids for enhancing crop tolerance to global warming either by enhancing the emission of isoprenoids or by using isoprenoid-inspired anti-high temperature agents.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.