细菌色氨酸-tRNA合成酶识别谱系特异性tRNA的机制及其对抑制剂发现的意义。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoying Peng, Kaijiang Xia, Lingzhen Xiao, Haoran Qi, Qingting Huang, Manli Xiang, Lu Han, Haipeng Qiu, Qiong Gu, Bingyi Chen, Huihao Zhou
{"title":"细菌色氨酸-tRNA合成酶识别谱系特异性tRNA的机制及其对抑制剂发现的意义。","authors":"Xiaoying Peng, Kaijiang Xia, Lingzhen Xiao, Haoran Qi, Qingting Huang, Manli Xiang, Lu Han, Haipeng Qiu, Qiong Gu, Bingyi Chen, Huihao Zhou","doi":"10.1093/nar/gkaf466","DOIUrl":null,"url":null,"abstract":"<p><p>Tryptophanyl-tRNA synthetase (TrpRS) catalyzes the attachment of tryptophan (l-Trp) to tRNATrp, thereby providing the ribosome with a crucial substrate for the decoding of the UGG codon during protein translation. Both bacterial and eukaryotic TrpRSs are unable to efficiently cross-aminoacylate their respective tRNATrp substrates, indicating the evolution of lineage-specific mechanisms for tRNATrp recognition. Herein, we present the first co-crystal structure of bacterial TrpRS from Escherichia coli (EcTrpRS) in complex with its tRNATrp. EcTrpRS demonstrates bacterial-specific interactions with both the anticodon triplet and the acceptor arm of tRNATrp. Particularly, the bacterial-specific residue Glu155 forms hydrogen bonds with the discriminator base G73, thereby stabilizing it in a conformation distinct from that of A73 in the eukaryotic tRNATrp bound to human TrpRS. Through compound screening, we identified tirabrutinib and its analogues as selective inhibitors of bacterial TrpRS. These compounds occupy the l-Trp and tRNATrp CCA end binding sites of bacterial TrpRS, both of which exhibit less conservation compared to the ATP binding site between bacterial and eukaryotic TrpRSs. These findings enhance our understanding of the lineage-specific recognition of tRNATrp by bacterial TrpRS and highlight the CCA end binding site as a promising target for the future development of selective bacterial TrpRS inhibitors as potential antimicrobials.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 10","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135181/pdf/","citationCount":"0","resultStr":"{\"title\":\"The mechanism of lineage-specific tRNA recognition by bacterial tryptophanyl-tRNA synthetase and its implications for inhibitor discovery.\",\"authors\":\"Xiaoying Peng, Kaijiang Xia, Lingzhen Xiao, Haoran Qi, Qingting Huang, Manli Xiang, Lu Han, Haipeng Qiu, Qiong Gu, Bingyi Chen, Huihao Zhou\",\"doi\":\"10.1093/nar/gkaf466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tryptophanyl-tRNA synthetase (TrpRS) catalyzes the attachment of tryptophan (l-Trp) to tRNATrp, thereby providing the ribosome with a crucial substrate for the decoding of the UGG codon during protein translation. Both bacterial and eukaryotic TrpRSs are unable to efficiently cross-aminoacylate their respective tRNATrp substrates, indicating the evolution of lineage-specific mechanisms for tRNATrp recognition. Herein, we present the first co-crystal structure of bacterial TrpRS from Escherichia coli (EcTrpRS) in complex with its tRNATrp. EcTrpRS demonstrates bacterial-specific interactions with both the anticodon triplet and the acceptor arm of tRNATrp. Particularly, the bacterial-specific residue Glu155 forms hydrogen bonds with the discriminator base G73, thereby stabilizing it in a conformation distinct from that of A73 in the eukaryotic tRNATrp bound to human TrpRS. Through compound screening, we identified tirabrutinib and its analogues as selective inhibitors of bacterial TrpRS. These compounds occupy the l-Trp and tRNATrp CCA end binding sites of bacterial TrpRS, both of which exhibit less conservation compared to the ATP binding site between bacterial and eukaryotic TrpRSs. These findings enhance our understanding of the lineage-specific recognition of tRNATrp by bacterial TrpRS and highlight the CCA end binding site as a promising target for the future development of selective bacterial TrpRS inhibitors as potential antimicrobials.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 10\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf466\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

色氨酸- trna合成酶(trpr)催化色氨酸(l-Trp)附着在tRNATrp上,从而在蛋白质翻译过程中为核糖体提供解码UGG密码子的关键底物。细菌和真核生物的TrpRSs都不能有效地交叉氨基化各自的tRNATrp底物,这表明tRNATrp识别的谱系特异性机制的进化。在此,我们首次提出了大肠杆菌trpr (ectrpr)与其tRNATrp复合物的共晶结构。ectrpr与tRNATrp的抗密码子三联体和受体臂均具有细菌特异性相互作用。特别是,细菌特异性残基Glu155与鉴别碱基G73形成氢键,从而使其稳定在与人类trpr结合的真核tRNATrp中的A73不同的构象上。通过化合物筛选,我们确定了tirabrutinib及其类似物是细菌trpr的选择性抑制剂。这些化合物占据细菌trpr的l-Trp和tRNATrp CCA末端结合位点,与细菌和真核trpr之间的ATP结合位点相比,这两个位点的保守性较低。这些发现增强了我们对细菌trpr对tRNATrp的谱系特异性识别的理解,并强调了CCA末端结合位点是未来开发选择性细菌trpr抑制剂作为潜在抗菌剂的有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mechanism of lineage-specific tRNA recognition by bacterial tryptophanyl-tRNA synthetase and its implications for inhibitor discovery.

Tryptophanyl-tRNA synthetase (TrpRS) catalyzes the attachment of tryptophan (l-Trp) to tRNATrp, thereby providing the ribosome with a crucial substrate for the decoding of the UGG codon during protein translation. Both bacterial and eukaryotic TrpRSs are unable to efficiently cross-aminoacylate their respective tRNATrp substrates, indicating the evolution of lineage-specific mechanisms for tRNATrp recognition. Herein, we present the first co-crystal structure of bacterial TrpRS from Escherichia coli (EcTrpRS) in complex with its tRNATrp. EcTrpRS demonstrates bacterial-specific interactions with both the anticodon triplet and the acceptor arm of tRNATrp. Particularly, the bacterial-specific residue Glu155 forms hydrogen bonds with the discriminator base G73, thereby stabilizing it in a conformation distinct from that of A73 in the eukaryotic tRNATrp bound to human TrpRS. Through compound screening, we identified tirabrutinib and its analogues as selective inhibitors of bacterial TrpRS. These compounds occupy the l-Trp and tRNATrp CCA end binding sites of bacterial TrpRS, both of which exhibit less conservation compared to the ATP binding site between bacterial and eukaryotic TrpRSs. These findings enhance our understanding of the lineage-specific recognition of tRNATrp by bacterial TrpRS and highlight the CCA end binding site as a promising target for the future development of selective bacterial TrpRS inhibitors as potential antimicrobials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信