{"title":"使用氟代谢标记介导的接近连接法对n4 -乙酰胞苷修饰RNA的单细胞成像。","authors":"Qi Wang, Yuhao Du, Shen Yan, Ziang Lu, Yongling Tang, Feng Xiao, Fuling Zhou, Xiang Zhou","doi":"10.1093/nar/gkaf464","DOIUrl":null,"url":null,"abstract":"<p><p>N 4-Acetylcytidine (ac4C) is an emerging epitranscriptomic mark involved in regulating RNA stability, translation, and gene expression. Despite its emerging role in gene regulation and disease, current methods for in situ detection of ac4C-modified RNA lack sensitivity and specificity. To overcome these challenges, we developed fluorine metabolic labeling mediated proximity ligation assay (FMPLA), a method combining fluorine-based metabolic labeling with a proximity ligation assay for precise detection of newly synthesized fluoro-metabolically labeled ac4C sites. This approach enables high-sensitivity visualization of multiple RNA species, and provides insights into the abundance and spatial dynamics of ac4C-modified RNAs during the cell cycle and under chemotherapeutic stress. Additionally, FMPLA reveals distinct RNA modification patterns in drug-resistant cancer cells, highlighting its potential in studying functions and mechanisms of RNA ac4C modification.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 10","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135178/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell imaging of N4-acetylcytidine-modified RNA using fluorine metabolic labeling mediated proximity ligation assay.\",\"authors\":\"Qi Wang, Yuhao Du, Shen Yan, Ziang Lu, Yongling Tang, Feng Xiao, Fuling Zhou, Xiang Zhou\",\"doi\":\"10.1093/nar/gkaf464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N 4-Acetylcytidine (ac4C) is an emerging epitranscriptomic mark involved in regulating RNA stability, translation, and gene expression. Despite its emerging role in gene regulation and disease, current methods for in situ detection of ac4C-modified RNA lack sensitivity and specificity. To overcome these challenges, we developed fluorine metabolic labeling mediated proximity ligation assay (FMPLA), a method combining fluorine-based metabolic labeling with a proximity ligation assay for precise detection of newly synthesized fluoro-metabolically labeled ac4C sites. This approach enables high-sensitivity visualization of multiple RNA species, and provides insights into the abundance and spatial dynamics of ac4C-modified RNAs during the cell cycle and under chemotherapeutic stress. Additionally, FMPLA reveals distinct RNA modification patterns in drug-resistant cancer cells, highlighting its potential in studying functions and mechanisms of RNA ac4C modification.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 10\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf464\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf464","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-cell imaging of N4-acetylcytidine-modified RNA using fluorine metabolic labeling mediated proximity ligation assay.
N 4-Acetylcytidine (ac4C) is an emerging epitranscriptomic mark involved in regulating RNA stability, translation, and gene expression. Despite its emerging role in gene regulation and disease, current methods for in situ detection of ac4C-modified RNA lack sensitivity and specificity. To overcome these challenges, we developed fluorine metabolic labeling mediated proximity ligation assay (FMPLA), a method combining fluorine-based metabolic labeling with a proximity ligation assay for precise detection of newly synthesized fluoro-metabolically labeled ac4C sites. This approach enables high-sensitivity visualization of multiple RNA species, and provides insights into the abundance and spatial dynamics of ac4C-modified RNAs during the cell cycle and under chemotherapeutic stress. Additionally, FMPLA reveals distinct RNA modification patterns in drug-resistant cancer cells, highlighting its potential in studying functions and mechanisms of RNA ac4C modification.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.