在铜绿假单胞菌中,抗生素反应性调节因子协调慢性到急性毒力转换。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xinbo Wang, Guizhen Li, Yuzheng Zou, Huiluo Cao, Lisheng Liao, Xiaofan Zhou, Lian-Hui Zhang, Zeling Xu
{"title":"在铜绿假单胞菌中,抗生素反应性调节因子协调慢性到急性毒力转换。","authors":"Xinbo Wang, Guizhen Li, Yuzheng Zou, Huiluo Cao, Lisheng Liao, Xiaofan Zhou, Lian-Hui Zhang, Zeling Xu","doi":"10.1093/nar/gkaf471","DOIUrl":null,"url":null,"abstract":"<p><p>Misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant superbugs. In addition, evidence is emerging that antibiotic exposure could impose substantial influence on bacterial virulence, but the underlying mechanisms remain poorly understood. Here, we discovered a highly conserved aminoglycoside-responsive regulator, AmgR, that inversely modulates the production of destructive toxins [pyocyanin (PYO) and protease] and the inter-bacterial competition weapon [type VI secretion system (H1-T6SS)], which are the signature virulence factors involved in acute and chronic infections, respectively, in Pseudomonas aeruginosa. We demonstrated that AmgR positively regulates PYO and protease productions by directly activating the transcription of their biosynthetic genes and negatively regulates H1-T6SS indirectly through the quorum sensing regulator PqsR. Importantly, we showed that AmgR can be induced by sub-inhibitory concentrations of aminoglycoside antibiotics to trigger the bacterial chronic-to-acute virulence switch, by promoting P.aeruginosa to withdraw from production of the chronic infection-associated virulence factor H1-T6SS to gear up for generation of acute infection related toxins PYO and protease. This study highlights the risks of improper antibiotic usage not only in elevating antibiotic resistance but also in reprogramming bacterial virulence to exacerbate disease dissemination and acute lethality, providing critical insights for the optimization of antibiotic therapies.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 10","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135177/pdf/","citationCount":"0","resultStr":"{\"title\":\"An antibiotic-responsive regulator orchestrates chronic-to-acute virulence switch in Pseudomonas aeruginosa.\",\"authors\":\"Xinbo Wang, Guizhen Li, Yuzheng Zou, Huiluo Cao, Lisheng Liao, Xiaofan Zhou, Lian-Hui Zhang, Zeling Xu\",\"doi\":\"10.1093/nar/gkaf471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant superbugs. In addition, evidence is emerging that antibiotic exposure could impose substantial influence on bacterial virulence, but the underlying mechanisms remain poorly understood. Here, we discovered a highly conserved aminoglycoside-responsive regulator, AmgR, that inversely modulates the production of destructive toxins [pyocyanin (PYO) and protease] and the inter-bacterial competition weapon [type VI secretion system (H1-T6SS)], which are the signature virulence factors involved in acute and chronic infections, respectively, in Pseudomonas aeruginosa. We demonstrated that AmgR positively regulates PYO and protease productions by directly activating the transcription of their biosynthetic genes and negatively regulates H1-T6SS indirectly through the quorum sensing regulator PqsR. Importantly, we showed that AmgR can be induced by sub-inhibitory concentrations of aminoglycoside antibiotics to trigger the bacterial chronic-to-acute virulence switch, by promoting P.aeruginosa to withdraw from production of the chronic infection-associated virulence factor H1-T6SS to gear up for generation of acute infection related toxins PYO and protease. This study highlights the risks of improper antibiotic usage not only in elevating antibiotic resistance but also in reprogramming bacterial virulence to exacerbate disease dissemination and acute lethality, providing critical insights for the optimization of antibiotic therapies.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 10\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf471\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf471","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素的滥用和过度使用导致了耐抗生素超级细菌的迅速出现。此外,越来越多的证据表明,抗生素暴露可能对细菌的毒力产生重大影响,但其潜在机制仍然知之甚少。在这里,我们发现了一个高度保守的氨基糖苷反应性调节因子AmgR,它可以反向调节破坏性毒素[pyocyanin (PYO)和蛋白酶]和细菌间竞争武器[VI型分泌系统(H1-T6SS)]的产生,这是铜绿假单胞菌急性和慢性感染的标志性毒力因子。我们证明AmgR通过直接激活PYO和蛋白酶合成基因的转录来正向调节PYO和蛋白酶的产生,并通过群体感应调节因子PqsR间接负向调节H1-T6SS。重要的是,我们发现AmgR可以通过亚抑制浓度的氨基糖苷类抗生素诱导,通过促进p.e aeruginosa退出慢性感染相关毒力因子H1-T6SS的生产,以加速急性感染相关毒素PYO和蛋白酶的产生,从而触发细菌慢性到急性毒力转换。本研究强调了不当使用抗生素的风险,不仅在提高抗生素耐药性方面,而且在重新编程细菌毒力以加剧疾病传播和急性致死方面,为抗生素治疗的优化提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An antibiotic-responsive regulator orchestrates chronic-to-acute virulence switch in Pseudomonas aeruginosa.

Misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant superbugs. In addition, evidence is emerging that antibiotic exposure could impose substantial influence on bacterial virulence, but the underlying mechanisms remain poorly understood. Here, we discovered a highly conserved aminoglycoside-responsive regulator, AmgR, that inversely modulates the production of destructive toxins [pyocyanin (PYO) and protease] and the inter-bacterial competition weapon [type VI secretion system (H1-T6SS)], which are the signature virulence factors involved in acute and chronic infections, respectively, in Pseudomonas aeruginosa. We demonstrated that AmgR positively regulates PYO and protease productions by directly activating the transcription of their biosynthetic genes and negatively regulates H1-T6SS indirectly through the quorum sensing regulator PqsR. Importantly, we showed that AmgR can be induced by sub-inhibitory concentrations of aminoglycoside antibiotics to trigger the bacterial chronic-to-acute virulence switch, by promoting P.aeruginosa to withdraw from production of the chronic infection-associated virulence factor H1-T6SS to gear up for generation of acute infection related toxins PYO and protease. This study highlights the risks of improper antibiotic usage not only in elevating antibiotic resistance but also in reprogramming bacterial virulence to exacerbate disease dissemination and acute lethality, providing critical insights for the optimization of antibiotic therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信