Delphine Mion, Louis Bunel, Sathish Ramakrishnan, Paul Heo, Frédéric Pincet
{"title":"用于生物反应电学和光学监测的微流控芯片中的仿生膜。","authors":"Delphine Mion, Louis Bunel, Sathish Ramakrishnan, Paul Heo, Frédéric Pincet","doi":"10.1038/s41596-025-01171-7","DOIUrl":null,"url":null,"abstract":"<p><p>Biological membranes separate distinct inner and outer compartments through the organization of fluid lipids into two-dimensional bilayers. The specific lipid composition varies across different membrane types. Model membranes play a crucial role in replicating certain features of biological membranes. They provide invaluable insights to decipher reactions at biological membranes in physicochemical cues. In this Protocol, we present a comprehensive procedure for creating a biomimetic membrane that encompasses key characteristics of biological membranes. Each leaflet of this horizontal and large (~10,000 µm<sup>2</sup>) membrane is obtained from a separate set of liposomes, allowing control of the lipid distribution between the two bilayer leaflets. Suspended in a vertical conduit separating two controllable horizontal microfluidic channels, this membrane can be used for the reconstitution of chemical or molecular reactions in close proximity to the membrane on the desired leaflet. The microfluidic chip containing the two channels separated by the vertical conduit is made of poly(dimethylsiloxane) and is fabricated from resin molds. Initially, oil is trapped in the conduit. Liposome solutions are pushed in each channel and spread on the trapped oil-buffer interface, forming a separate leaflet facing each channel. As oil is absorbed by poly(dimethylsiloxane), the two leaflets assemble and form a bilayer. We outline four applications of this biomimetic membrane microfluidic setup, incorporating optical microscopy and/or electrical readouts (patch-clamp amplifiers): single-particle and global diffusion, membrane fusion and channel formation. The entire protocol, covering chip fabrication, membrane formation and various measurements, can be completed within 2-3 d.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic membrane in a microfluidic chip for the electrical and optical monitoring of biological reactions.\",\"authors\":\"Delphine Mion, Louis Bunel, Sathish Ramakrishnan, Paul Heo, Frédéric Pincet\",\"doi\":\"10.1038/s41596-025-01171-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological membranes separate distinct inner and outer compartments through the organization of fluid lipids into two-dimensional bilayers. The specific lipid composition varies across different membrane types. Model membranes play a crucial role in replicating certain features of biological membranes. They provide invaluable insights to decipher reactions at biological membranes in physicochemical cues. In this Protocol, we present a comprehensive procedure for creating a biomimetic membrane that encompasses key characteristics of biological membranes. Each leaflet of this horizontal and large (~10,000 µm<sup>2</sup>) membrane is obtained from a separate set of liposomes, allowing control of the lipid distribution between the two bilayer leaflets. Suspended in a vertical conduit separating two controllable horizontal microfluidic channels, this membrane can be used for the reconstitution of chemical or molecular reactions in close proximity to the membrane on the desired leaflet. The microfluidic chip containing the two channels separated by the vertical conduit is made of poly(dimethylsiloxane) and is fabricated from resin molds. Initially, oil is trapped in the conduit. Liposome solutions are pushed in each channel and spread on the trapped oil-buffer interface, forming a separate leaflet facing each channel. As oil is absorbed by poly(dimethylsiloxane), the two leaflets assemble and form a bilayer. We outline four applications of this biomimetic membrane microfluidic setup, incorporating optical microscopy and/or electrical readouts (patch-clamp amplifiers): single-particle and global diffusion, membrane fusion and channel formation. The entire protocol, covering chip fabrication, membrane formation and various measurements, can be completed within 2-3 d.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01171-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01171-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Biomimetic membrane in a microfluidic chip for the electrical and optical monitoring of biological reactions.
Biological membranes separate distinct inner and outer compartments through the organization of fluid lipids into two-dimensional bilayers. The specific lipid composition varies across different membrane types. Model membranes play a crucial role in replicating certain features of biological membranes. They provide invaluable insights to decipher reactions at biological membranes in physicochemical cues. In this Protocol, we present a comprehensive procedure for creating a biomimetic membrane that encompasses key characteristics of biological membranes. Each leaflet of this horizontal and large (~10,000 µm2) membrane is obtained from a separate set of liposomes, allowing control of the lipid distribution between the two bilayer leaflets. Suspended in a vertical conduit separating two controllable horizontal microfluidic channels, this membrane can be used for the reconstitution of chemical or molecular reactions in close proximity to the membrane on the desired leaflet. The microfluidic chip containing the two channels separated by the vertical conduit is made of poly(dimethylsiloxane) and is fabricated from resin molds. Initially, oil is trapped in the conduit. Liposome solutions are pushed in each channel and spread on the trapped oil-buffer interface, forming a separate leaflet facing each channel. As oil is absorbed by poly(dimethylsiloxane), the two leaflets assemble and form a bilayer. We outline four applications of this biomimetic membrane microfluidic setup, incorporating optical microscopy and/or electrical readouts (patch-clamp amplifiers): single-particle and global diffusion, membrane fusion and channel formation. The entire protocol, covering chip fabrication, membrane formation and various measurements, can be completed within 2-3 d.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.